Finite-size particle dynamics in non-homogeneous turbulence
(PhD studentship)

We are looking for a motivated person to work in a funded research project in the area of turbu-
lent particulate flow. We will investigate the interaction between weakly inhomogeneous turbu-
lence and sedimenting particles which are larger than the smallest flow structures. The objective
is to determine the influence of particle size and concentration on both the particle motion and
the fluid flow. The study, which will be carried out in collaboration with a partner team perform-
ing laboratory experiments, can be expected to generate unprecedented data-sets allowing for
new insight into long-standing problems.

In our research group we are using numerical methods to investigate large-scale particulate
flow systems with relevance to various technical and natural applications. The approach relies on
massively-parallel simulations, leading to large amounts of raw data which need to be explored
and efficiently analyzed in order to reveal the underlying physics.

Particles settling in ambient fluid (left) and in homogeneous turbulence (right).

The present activity involves method and code development, design of numerical experiments,
data analysis, physical modeling and scientific writing/presentation.

The candidate should:
• hold a university degree in engineering, physics or applied maths;
• have very good knowledge in fluid mechanics and turbulence;
• have acquired programming skills in Fortran, C or C++;
• possess good communication skills and motivation to work in a team.

The position is to be filled as soon as possible. The funding will run for three years (full time,
salary according to public pay grade “TVL E13”). We offer the following benefits:
• working in a stimulating scientific environment;
• access to top-notch super-computing facilities;
• research at the frontier of turbulent multi-physics;
• cutting edge numerical approaches.

Contact:
Prof. Dr. M. Uhlmann
Chair for Numerical Fluid Mechanics
Institute for Water and Environment, Karlsruhe Institute of Technology
76131 Karlsruhe, Germany, markus.uhlmann@kit.edu

(typeset June 16, 2024)