Programm "Lebensgrundlage Umwelt und ihre Sicherung" (BWPLUS)

Abschlussbericht

Ableitung naturraumtypischer Anreicherungsfaktoren zur Bestimmung des Phosphor- und Schwermetalleintrages in Oberflächengewässer durch Erosion

von

Stephan Fuchs & Martin Schwarz

Universität Karlsruhe (TH) Institut für Wasser- und Gewässerentwicklung (IWG) Bereich Siedlungswasser- und Wassergütewirtschaft Leitung: Prof. Dr.-Ing. E.h. Hermann H. Hahn Ph. D.

In Zusammenarbeit mit:

Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau, Referat Landesbodenkunde (LGRB; Herr Dr. W. Fleck und Herr Dr. F. Waldmann) und Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW; Herr Dr. J. Ruf)

Förderkennzeichen: BWR 24017

Die Arbeiten des Programms "Lebensgrundlage Umwelt und ihre Sicherung" werden mit Mitteln des Landes Baden-Württemberg gefördert.

Zusammenfassung

Schlüsselworte

Anreicherungsfaktor (ER), Erosion, Hochwasserrückhaltebecken (HRB), Schwermetalle, Phosphor, Bodenregion, Sediment

In Stoffstrombilanzierungsmodellen werden zur Abschätzung der Einträge durch Erosion stoffspezifische Anreicherungsfaktoren (ER) benötigt. Ziel des Projektes war die Ableitung naturraum- bzw. bodenregionstypischer Anreicherungsfaktoren (ER) für P_{ges} - und 6 Schwermetalle (Cd, Cr, Cu, Ni, Pb, Zn) für Baden-Württemberg. Es sollte weiterhin geprüft werden in wie weit die Befunde auf deutsche Bodenregionen übertragen werden können Ausgewählte HRB aus Baden-Württemberg dienten dabei als Probenahmestellen für das erodierte Bodenmaterial (Sediment- und Hochwasserbeprobungen) aus dem Einzugsgebiet. Die Proben wurden hinsichtlich ihrer Stoffkonzentrationen mit den Oberbodenbeprobungen von repräsentativ ausgewählten Einzugsgebietsflächen verglichen und daraus der jeweilige Anreicherungsfaktor berechnet.

In 4 Bodenregionen von Baden-Württemberg wurden an 13 HRB-Standorten Untersuchungen durchgeführt. Insgesamt wurden ca. 3.800 Einzelproben genommen: 135 Mischproben von den Oberböden der Äcker und 101 Mischproben aus den Stauräumen der HRB. Zusätzlich wurden an 10 von 13 Standorten Hochwasserbeprobungen durchgeführt. Der überwiegende Teil der Proben wurde zur Ermittlung der Korngrößenverteilung und Bestimmung der Stoffkonzentrationen in die S-, U- und T-Fraktion aufgetrennt. Hierzu wurde eine Fraktionierungsmethode entwickelt, bei der für jede Kornfraktion eine ausreichende Materialmenge für die nachfolgenden Analysen bereitstellt werden konnte.

Die ER wurden auf die ackerbaulich relevanten Bodenregionen von Baden-Württemberg in Form einer Typisierung extrapoliert. Die mittleren ER liegen für P zwischen 1,1 und 2,5, für Cd zwischen 1,2 und 3,5, für Cr zwischen 1,7 und 5,5, für Cu zwischen 1,4 und 5,0, für Ni zwischen 1,3 und 4,8, für Pb zwischen 1,0 und 3,6 und für Zn zwischen 1,6 und 3,5.

Insbesondere in Einzugsgebieten mit geringem Ackerflächenanteil und hohem Grünlandanteil sowie mit nennenswerten Wald- und Mooranteilen traten sehr hohe Stoffkonzentrationen in den Hochwasserproben auf. Diese sind nicht auf den Prozess der Erosion, sondern auf die Auswaschung von Huminstoffen (Kolloide) durch oberflächennahen Zwischenabfluss zurückzuführen. Sie werden deshalb nicht bei der Berechnung der ER berücksichtigt.

Die Untersuchungen bestätigen die Ergebnisse der Voruntersuchungen und die Hypothese des Forschungsvorhabens, dass die aus Freilandproben ermittelten ER kleiner sind als die teilweise in Stoffstrombilanzierungsmodellen (z.B. MONERIS) verwendeten ER. Die Annahme von unrealistischen ER kann zu einer deutlichen Überschätzung der Phosphorund Schwermetalleinträge über den Prozess der Bodenerosion führen, was die Relevanz der im Rahmen dieser Untersuchung erzielten Ergebnisse unterstreicht.

Abstract

Keywords

enrichment ratio (ER), erosion, flood retention basin (FRB), Germany, heavy metals, soil region, nutrients, phosphorus, sediment

For calculating the emission of substances into surface waters via erosion specific enrichment ratios are necessary. The aim of this study was to provide enrichment ratios for phosphorus and six heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) based on field studies in the federal state of Baden-Wuerttemberg. Flood retention basins were chosen as sediment trapping systems for the eroded soil from the agricultural catchment. The sediment samples and the samples taken during flood events were compared with the surface soil samples taken from different sites within the catchment by means of particle size distributions and phosphorus and heavy metal concentrations. Based on this comparison enrichment ratios for the studied elements and considered soil regions were calculated.

In four soil regions in the state of Baden-Wuerttemberg at 13 different sampling sites 135 soil samples (about 3.800 sub-samples) from the catchment and 101 sediment samples from the sedimentation reservoirs of the flood retention basins were taken. At ten sites flood samples were taken at the outlet of the basin. A method to fractionate the soil and sediment samples into sand, silt and clay was developed providing enough material of each fraction for the analysis of phosphorus and heavy metal concentrations.

The enrichment ratios derived from the different investigation sites were extrapolated to the soil regions of Baden-Wuerttemberg. The enrichment ratios varied within the different soil regions from 1.1 to 2.5 for phosphorus, from 1.2 to 3.5 for Cd, from 1.7 to 5.5 for Cr, from 1.7 to 3.5 for Cr, from 1.4 to 5.0 for Cu, from 1.3 to 4.8 for Ni, from 1.0 to 3.6 for Pb and from 1.6 to 3.5 for Zn.

High phosphorus concentrations were found within the flood samples of several catchments characterized by high proportions of wetlands and pastureland. Within these catchments the phosphorus loss is predominantly caused by surface runoff and interflow of dissolved organic or colloidal fractions. As the responsible process is not soil erosion these values were not considered for calculating enrichment ratios.

Within the four soil regions studied the enrichment ratios for phosphorus and the considered heavy metals varied between 1,0 to 5,5. These values are significantly lower than those derived from the models actually applied for emission calculations (e.g. MONERIS). That means that the input of nutrients and pollutants via the pathway "erosion" is less important than actually assumed.

Inhaltsverzeichnis

1	Einleitung	7
	1.1 Veranlassung und Zielsetzung	7
	1.2 Erosion, Anreicherung und HRB	12
	1.3 Naturräumliche Gliederung und Bodenregionen in Baden-Württemberg	14
2	Material und Methoden	18
	2.1 Auswahl der untersuchten Standorte	18
	2.2 Probenahmen	
	2.2.1 Beprobung der Oberböden im Einzugsgebiet	
	2.2.2 Beprobung der Sedimente in den Stauräumen der HRB	
	2.2.3 Hochwasserbeprobungen	
	2.3 Korngrößenzusammensetzung	
	2.3.1 Fraktionierung	
	2.3.2 Laser-Partikelmessungen	
	2.4 Analytik	
	2.4.1 Probenvorbereitung	
	2.4.2 Priosprior- und Schwermetalianarytik	
	2.4.4 Carbonatgehalt	31
	2.4.5 TOC- bzw. Huminstoffgehalt	
3	o	
Ö	-	
	3.1 Charakterisierung der untersuchten Standorte	
	3.2 Charakterisierung der Oberbodenproben	
	3.2.2 Stoffgehalte	
	3.3 Charakterisierung der HRB-Sedimente und Hochwasserproben	
	3.3.1 Feststoffverteilung in den Boden-, Sediment- und Hochwasserproben	39
	3.3.2 P _{ges} -Konzentrationen in den Stauraumsedimenten aller untersuchter HRB	
	3.3.3 Pges-Konzentrationen in den Stauraumsedimenten des HRB Grombach	43
	3.4 ER anhand der Sedimentproben	
	3.4.1 Übersichtdarstellung der ER anhand der HRB-Sedimente	45
	3.4.2 Standort- und bodenregiongewichtete Darstellung der ER anhand der HRB-	
	Sedimente	
	3.5 ER anhand der Hochwasserproben	
	3.6 Standortspezifische Einflüsse auf den ER3.7 Methodendiskussion und Beurteilung der ER	
	3.7.1 Methodendiskussion	
	3.7.2 Beurteilung der Versuchsergebnisse	
	3.7.3 Vergleich der Ergebnisse mit anderen Untersuchungen	
	3.8 Regionalisierung und Extrapolation	62
4	Literatur	68
5	Danksagung	
6		73
()	Allialiu	7.5

Abbildungsverzeichnis

Abb. 1-1: Ubersicht über die Stoffeintrage aus Punkt- und diffusen Quellen in die	_
Oberflächengewässer	7
Abb. 1-2: Phosphoreinträge in die Oberflächengewässer Deutschlands für die Jahre 1985,	,
1995 und 2000	8
Abb. 1-3: Cadmium-, Chrom- und Kupfereinträge in die Oberflächengewässer Deutschland	ds
für die Jahre 1985, 1995 und 2000	9
Abb. 1-4: Nickel-, Blei- und Zinkeinträge in die Oberflächengewässer Deutschlands für die	<u> </u>
Jahre 1985, 1995 und 2000	
Abb. 1-5: Schematische Darstellung des Erosionsprozesses: Erosion, Transport und	
Deposition (links). Aufgrund der Deposition von schwereren und größeren Partikeln	
kommt es zu einer Zunahme der Feinstpartikel (rechts)	14
Abb. 1-6: Flächen und Bodenerosionsrisiko der 13 naturräumlichen Haupteinheiten von	17
Baden-Württemberg	16
Abb. 2-1: Schematische Übersicht bei der Vorgehensweise zur Auswahl der untersuchten	10
Standorte	10
Abb. 2-2: Lage der Suchräume, der HRB und der ausgewählten Untersuchungsstandorte	
Baden-Württemberg	
Abb. 2-3: Schematische Darstellung der Oberbodenprobenahme	
Abb. 2-4: Probenahmesystem mit Abflussmessgerät, Schwimmschalter, Tauchpumpen, ur	
1000 I-Behälter zur Beprobung eines Hochwasserereignisses am HRB Langengraber	
Grombach, östlicher Kraichgau	26
Abb. 2-5: Auftrennung der Hochwasserprobe durch Sedimentation in den	
Hochwasserüberstand und das Hochwassersediment	27
Abb. 3-1: Überblick über die standort- und bodenregiongewichtete	
Korngrößenzusammensetzung und Bodeneigenschaften	35
Abb. 3-2: Feststoffverteilungen in den Boden- Sediment- und Hochwasserproben	
(ungewichtete Mittelwerte von sämtlichen Proben)	40
Abb. 3-3: Wertespektrum der Feststoffverteilung in den Boden-, Sediment- und	
Hochwasserproben (bodenregiongewichtet, Boxplots mit Medianen, 10- und 90-	
Perzentil)	41
Abb. 3-4: Feststoffverteilung in den HRB-Sedimenten der untersuchten 13 HRB	
(ungewichtete Mittelwerte von sämtlichen Sedimentproben)	42
Abb. 3-5: Sedimentschichtbeprobung im Stauraum des HRB Grombach, bei dem die	
Sedimentschicht eines einzelnen Hochwasserereignisses beprobt werden konnte	43
Abb. 3-6: P _{ges} -Konzentrationen in unterschiedlichen Stauraumbereichen des HRB-Gromba	
Abb. 3-0.1 ges-10112cmtationen in unterschiedlichen otauraumbereichen des Fildb-Orombe	44
Abb. 3-7: ER für Phosphor und 6 Schwermetalle in den HRB-Sedimenten (alle Standorte,	
ungewichtet; Median, 25/75 Perzentil, 10/90 Perzentil, Ausreißer)	
Abb. 3-8: Vergleich der ER_P anhand der HRB-Sedimente und der Hochwasserproben (HW	
Abb. 2.0: D	
Abb. 3-9: P _{ges} -Konzentrationen in unterschiedlichen Fraktionen und in den Gesamtproben	
der Boden-, Sediment- und Hochwasserproben	
Abb. 3-10: Eingestaute HRB	51
Abb. 3-11: Methodenvergleich zwischen der Dekantiermethode (M) und der Laser-	
Partikelmessung (L) bei den Oberbodenproben	53
Abb. 3-12: P _{ges} -Konzentrationen im Einzugsgebiet und im Sediment des HRB Grombach	56
Abb. 3-13: "Sandfraktion" einer Oberbodenprobe	58
Abb. 3-14: Anreicherungsfaktoren für Phosphor und Cadmium in Baden-Württemberg	
Abb. 3-15: Anreicherungsfaktoren für Chrom und Kupfer in Baden-Württemberg	
Abb. 3-16: Anreicherungsfaktoren für Nickel und Blei in Baden-Württemberg	
Abb. 3-17: Anreicherungsfaktoren für Zink in Baden-Württemberg	67

Tabellenverzeichnis

Tab. 2-1: Lage, Geologie und Bodenart der Suchräume in Baden-Württemberg	19
Tab. 2-2: Zusammenstellung der Proben, die an den einzelnen Standorten der HRB	
genommen wurden	22
Tab. 2-3: Angewandte Erhebungsmethoden zur Auswahl der Beprobungsflächen	
("Liefergebiete") in den Einzugsgebieten	23
Tab. 3-1: Merkmale der ausgewählten Hochwasserrückhaltebecken in den verschiedene	n
Suchräumen Baden-Württembergs	33
Tab. 3-2: Parameter zu den Oberbodengehalten der beprobten Flächen zusammengefas	sst
für jeden Standort, jede Bodenregion und für Baden-Württemberg	35
Tab. 3-3: Schwermetallgesamtgehalte ackerbaulich genutzter Oberböden (nach Waldma	ınn
2006)	38
Tab. 3-4: P _{ges} -Konzentrationen in den Ackeroberböden und den Sedimenten der HRB-	
Stauräume (alle Standorte)	43
Tab. 3-5: Anreicherungsfaktoren für P _{ges} und sechs Schwermetalle für die untersuchten	
Bodenregionen	46
Tab. 3-6: Unterschiede in den ER _P , AFS-Gehalten und GV in ausgewählten Überständer	า der
Hochwasserproben von den nördlichen und südlichen Untersuchungsstandorten	49
Tab. 3-7: P _{ges} -Konzentrationen und Anreicherungsfaktoren verschiedener Proben und	
Probenfraktionen am Standort Fleischwangen (Oberschwaben)	50
Tab. 3-8: Vergleich von gemessenen ER _P mit berechneten ER _P (MONERIS-Baden-	
Württemberg)	57
Tab. 3-9: Prozentuale Verteilung der P _{ges} -Mengen auf die Ton-, Schluff- und Sandfraktion	
Tab. 3-10: P _{ges} -Konzentrationen [mg/kg] in den Gesamtproben und in der Tonfraktion alle	
Boden-, Sediment- und Hochwasserproben (alle Proben, ungewichtet)	59
Tab. 3-11: Zusammenstellung der ER für verschiedene Elemente und Parameter aus	
unterschiedlichen Untersuchungen	60

Abkürzungsverzeichnis

Abkürzung Bedeutung

AFS Abfiltrierbare Stoffe

Baden-Württemberg

Württemberg

BÜK Bodenübersichtskarte

ER Enrichment ratio (engl.): Anreicherungsverhältnis, -faktor

EZG Einzugsgebiet

GV Glühverlust

H₂O_{demin} Demineralisiertes Wasser

HRB Hochwasserrückhaltebecken

HW gesamt Homogenisierte Hochwasserprobe, bestehend aus dem

Hochwassersediment und den Hochwasserüberstand

HW > 0,45 μ m Feststoffe des Hochwassers mit Partikeldurchmessern > 0,45 μ m

(AFS-Bestimmung)

HW < 0,45 μ m Feststoffe des Hochwassers mit Partikeldurchmessern < 0,45 μ m

(AFS-Bestimmung)

MONERIS Modelling Nutrient Emissions in River Systems

P_{CAL} Calcium-Acetat-Lactat-lösliches Phosphor (als pflanzenverfügbares

Phosphor bezeichnet)

P_{ges} Königswasser-lössliches Phosphor (als Gesamtphosphor bezeichnet)

S Sand

SM Schwermetall(e)

T Ton

TC, TIC, TOC Gesamtkohlenstoff, gesamter anorganischer, organisch gebundener

Kohlenstoff

U Schluff

WaBoA Wasser- und Bodenatlas Baden-Württemberg

1 Einleitung

1.1 Veranlassung und Zielsetzung

Der Eintrag von Nähr- und Schadstoffen in die Oberflächengewässer wird auf der Maßstabsebene von Flussgebieten mit Hilfe von Modellen abgeschätzt. Für Baden-Württemberg geschieht dies mit dem Stoffstrommodell MONERIS (Modelling Nutrient Emissions in River Systems), welches von Behrendt et al. (1999) entwickelt und zwischenzeitlich an die Bedingungen in Baden-Württemberg angepasst wurde (LUBW 2005a). Grundsätzlich wird dabei zwischen Punktquellen, z.B. kommunale Kläranlagen, industrielle Direkteinleiter, und diffusen Quellen, z.B. Mischwasserentlastungen, Erosion, Drainagen, unterschieden (Abb. 1-1).

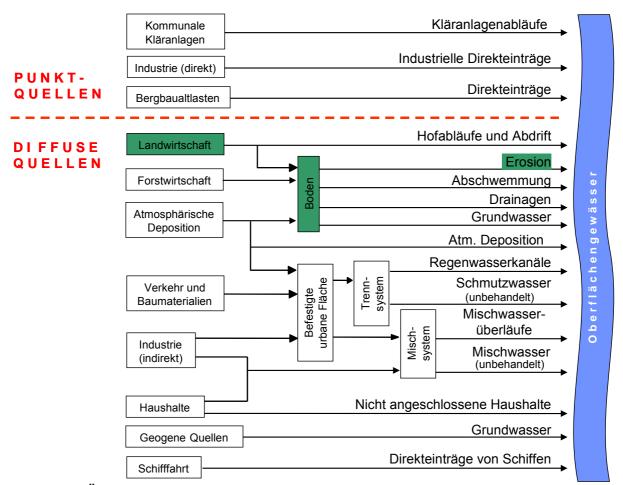


Abb. 1-1: Übersicht über die Stoffeinträge aus Punkt- und diffusen Quellen in die Oberflächengewässer Grün hervorgehoben ist der Pfad Erosion (aus Fuchs et al. 2002)

Insbesondere Berechnungen für diffuse Quellen sind bei der Modellierung mit großen Unsicherheiten behaftet. Dies liegt an der vergleichsweise schlechten Datenbasis und an der Tatsache, dass teilweise komplexe Transport-, Retentions- und Umsetzungsprozesse zu berücksichtigen sind. Fehler bei der Abschätzung dieser Prozesse können gravierend sein,

da ein Großteil der Stoffeinträge in die Oberflächengewässer aus diffusen Quellen stammt. Allein durch den erosionsbedingten Bodeneintrag werden deutschlandweit für das Jahr 2000 beispielsweise 27 % des Phosphor- (Behrendt et al. 2003) und 52 % des Chromeintrages (Fuchs et al. 2002) verursacht (Abb. 1-2, Abb. 1-3, Abb. 1-4). Durch die starke Reduktion der Phosphor- und Schwermetalleinträge aus Punktquellen hat der prozentuale Anteil der Erosion am Gesamteintrag über die Jahre 1995 und 2000 stetig zugenommen (Abb. 1-2, Abb. 1-3, Abb. 1-4). Für das Jahr 2000 lag der erosionsbedingte Anteil für Phosphor und die dargestellten 6 Schwermetalle zwischen 15 % für Cd und 52 % für Chrom.

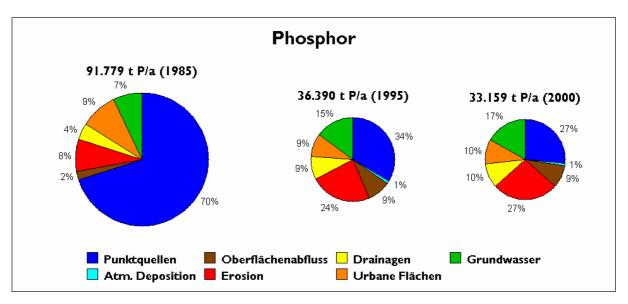


Abb. 1-2: Phosphoreinträge in die Oberflächengewässer Deutschlands für die Jahre 1985, 1995 und 2000

(aus: Behrendt et al. 2003)

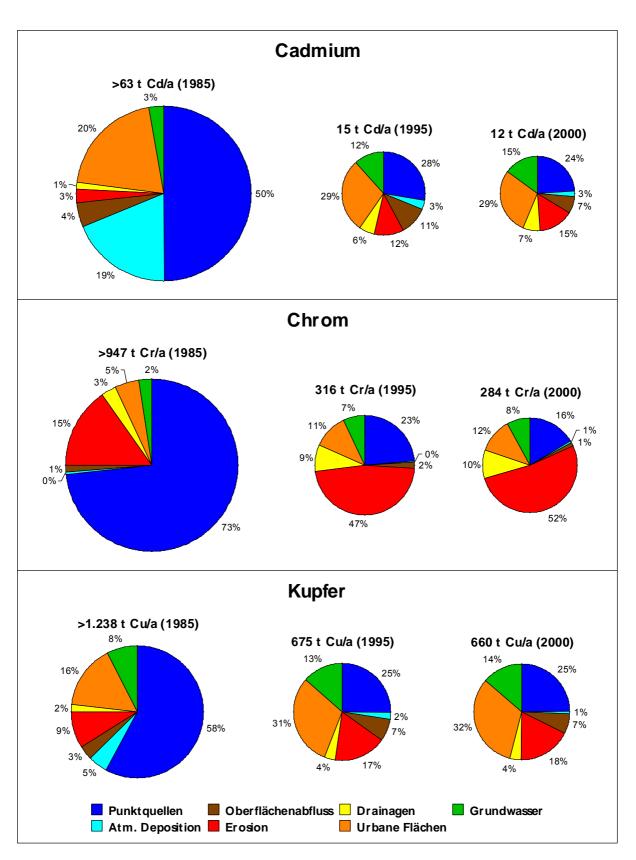


Abb. 1-3: Cadmium-, Chrom- und Kupfereinträge in die Oberflächengewässer Deutschlands für die Jahre 1985, 1995 und 2000 (aus: Fuchs et al. 2002)

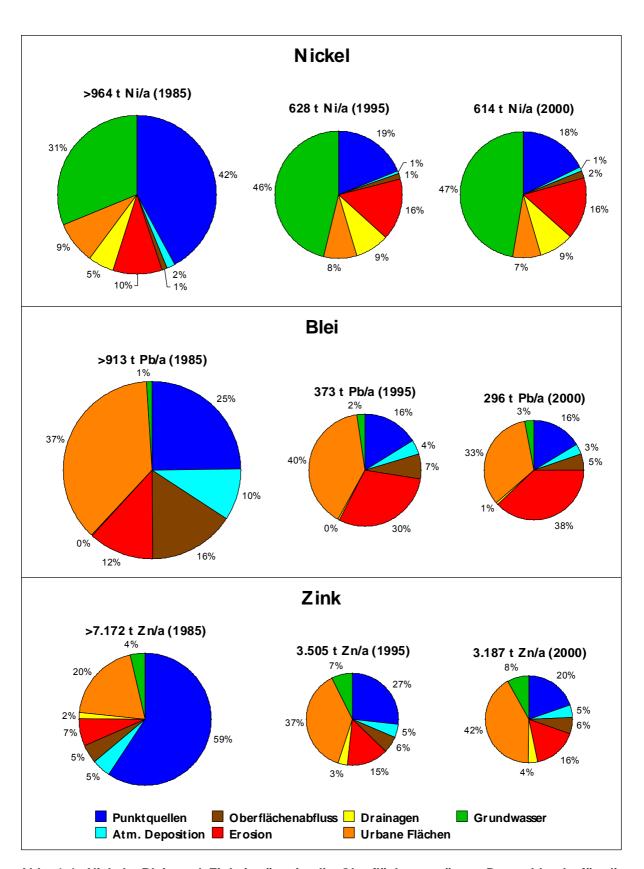


Abb. 1-4: Nickel-, Blei- und Zinkeinträge in die Oberflächengewässer Deutschlands für die Jahre 1985, 1995 und 2000 (aus: Fuchs et al. 2002)

In den Modellformulierungen für den Phosphor- und Schwermetalleintrag spielt der Anreicherungsfaktor (ER, engl. für enrichment ratio) eine bedeutende Rolle. Der ER ist definiert als Quotient aus Stoffgehalt im Sediment, das im Gewässer transportiert wird, und dem Stoffgehalt im Oberboden. In den Modellen werden die ER empirisch indirekt abgeleitet über den langjährigen mittleren Bodenabtrag (Auerswald 1990) oder über die Sedimentfracht (Behrendt et al. 1999).

Die Stoffanreicherung wird in verschiedenen Modellsystemen, z. B. Enrichment-Ratio-Modell von Behrendt et al. (1999) und CREAMS von Knisel (1980), durch die Verwendung von Anreicherungsfaktoren bzw. Anreicherungsverhältnissen (engl., enrichment ratio, ER) berücksichtigt. Die Grundlage für die Berechnung von Anreicherungsfaktoren nach Behrendt et al. (1999) bilden vergleichende Untersuchungen von Oberboden- und Schwebstoff-konzentrationen in Teileinzugsgebieten der Donau. Die hierbei festgestellten teilweise sehr hohen Anreicherungsfaktoren liefern die empirische Modellbasis zur Berechnung von Anreicherungsfaktoren sowohl für Baden-Württemberg als auch für Deutschland. Untersuchungen im Kraichgau zeigten jedoch, dass die Modellansätze zu einer deutlichen Überschätzung der "realen" Werte führen (Fuchs et al. 2004).

Untersuchungen zur direkten Bestimmung von ER wurden bislang hauptsächlich an einzelnen Standorten im kleinskaligen Bereich auf Schlagebene oder im Labor durchgeführt.

Ziel des vorliegenden Projektes ist es, die Anreicherungsfaktoren für naturraumtypische Bodenregionen in Baden-Württemberg durch direkte Messungen im Freiland bereitzustellen. Methodisch wurden dazu Hochwasserrückhaltebecken (HRB) verwendet, die als große Sedimentationsräume am Gebietsauslass des jeweiligen Einzugsgebietes über die gesamte Einzugsgebietsfläche und über einen langen Zeitraum integrieren. Mit den HRB und den darin enthaltenen Sedimenten ist somit eine integrative Betrachtungsweise der Hochwasserereignisse über eine lange Zeitspanne und die Bereitstellung von langjährigen mittleren Anreicherungsfaktoren möglich.

Ziel dieses Forschungsvorhabens war es, die ER für Phosphor und die 6 Schwermetalle Cadmium (Cd), Chrom (Cr), Kupfer (Cu), Nickel (Ni), Blei (Pb) und Zink (Zn) in vier unterschiedlichen, repräsentativen Naturräumen bzw. Bodenregionen Baden-Württembergs zu ermitteln. Zur Gewinnung von Sedimentproben wurden Hochwasserrückhaltebecken genutzt, die aufgrund ihres hohen spezifischen Beckenvolumens effektive Sedimentationsanlagen darstellen und das Erosionsgeschehen längerer Zeiträume integrieren, so dass sich daraus langjährige mittlere ER ableiten lassen. Den besonderen Wert von erosionsbürtigen Sedimenten nutzten Clemens & Stahr (1994) in ihren Kolluviumsuntersuchungen zur Bestimmung von Erosionsraten. Da jedoch davon auszugehen ist, dass insbesondere die Tonfraktion nicht quantitativ in den Rückhalteräumen verbleibt, wurden an ausgewählten Standorten Probenehmer für die fließende Welle installiert. Die so ermittelten ER können die bestehenden Modelle verbessern und in ihrem regionalen Bezug erhöhen.

Für die Umsetzung der Projektziele waren folgende Arbeitsschritte notwendig:

- 1. vorbereitende Arbeiten: Erstellen von thematischen Karten und Auswahl von HRB mittels Geographischem Informationssystem (GIS) und Feldbegehungen,
- 2. Freiland- und Laborarbeiten: Kartierung der Einzugsgebiete, Probenahme und Laboranalysen,
- 3. Modellerstellung und Extrapolation: Übertragung der erzielten Ergebnisse auf die Landesfläche von Baden-Württemberg und Deutschland

Die Gliederung für diesen Schlussbericht ergibt sich aus der obigen Auflistung der Projektziele. Eine wichtige Voraussetzung für die erfolgreiche Umsetzung des Projektes war die Auswahl von geeigneten HRB in den Suchräumen. Die Untersuchungsergebnisse zeigen, dass eine ausreichende Zahl an HRB in den entsprechenden Suchräumen für die Probenahmen zur Verfügung stand. Damit war eine wesentliche Grundlage für die durchzuführenden Untersuchungen gegeben.

Die Vorteile des gewählten Untersuchungsansatzes lassen sich wie folgt zusammenfassen:

- 1. Exaktere Berechnung der Nähr- und Schadstoffeinträge in die Oberflächengewässer auf Basis von bodenregionspezifischen Anreicherungsfaktoren.
- 2. Sichere Bestimmung der Handlungsschwerpunkte zur Reduzierung der Stoffeinträge¹.
- 3. Besseres Prozessverständnis und breitere Datenbasis zur Anpassung des Enrichment-Ratio-Modells von Behrendt et al. (1999).

Das Projekt wurde in Zusammenarbeit mit dem Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau, Referat Landesbodenkunde (LGRB; Dr. W. Fleck und Dr. F. Waldmann) und der Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW; Dr. J. Ruf) durchgeführt.

1.2 Erosion, Anreicherung und HRB

Erosion und Anreicherung

Unter Erosion werden durch Wind oder Niederschlag ausgelöste Prozesse verstanden, die eine Ablösung von Bodenpartikeln, ihren Transport und ihre Ablagerung beinhalten (Bork 1988, Gündra et al. 1995). Bei der Erosion durch Wasser handelt sich dabei ebenso wie bei der Kolmation und der Suffosion um eine hydrodynamische Deformation des Bodens (Busch & Luckner 1974, Schwarz 2004). Bei der linienhaften Erosion erfolgt der Bodenabtrag deutlich sichtbar in Rinnen oder Gräben. Oftmals nur schwer zu erkennen ist die flächenhafte Erosion, bei der der Boden gleichförmig über die gesamte Fläche abgetragen wird (Frede & Dabbert 1998).

¹ Durch die exakteren Berechnungen ergeben sich Verschiebungen in den relativen Anteilen der restlichen Eintragspfade, die für die Ableitung von Maßnahmen zur Reduzierung der Stoffeinträge in die Oberflächengewässer genutzt werden können.

Der Stoffeintrag in die Oberflächengewässer aufgrund der Erosion von landwirtschaftlichen Flächen lässt sich wie folgt berechnen:

$$E_{Ero P,SM} = SED \cdot c_{Boden} \cdot ER$$
 Glg. 1.1

E_{Ero P, SM}: Stoffeintrag von P, SM [kg]

SED: Sedimenteintrag (Bodenabtrag - Deposition) [kg]

c_{Boden}: Stoffkonzentration im Oberboden [mg/kg]

ER Anreicherungsfaktor []

Die Glg. 1.2 zeigt die Beziehung zwischen dem Stoffeintrag und dem Anreicherungsfaktor. Dabei kann der Anreicherungsfaktor über Modelle abgeschätzt (Auerswald 1989, Knisel 1980, Behrendt et al. 1999) oder direkt ermittelt werden.

Bei der direkten Ermittlung des ER ist darunter das Verhältnis zwischen Stoffkonzentration im Oberboden und der Stoffkonzentration im abgetragenen Material (z. B. aus der fließenden Welle oder dem Sediment) zu verstehen (Glg. 1.2). Liegt der ER < 1 handelt es sich um "Abreicherung", bei einem Faktor > 1 spricht man von "Anreicherung". Der Anreicherungsfaktor ER lässt sich wie folgt berechnen:

In Abb. 1-5 ist der Erosionsprozess hinsichtlich der Stoffanreicherung skizziert. Dargestellt ist die Anreicherung von Feinstpartikeln im Erosionsgut nach erfolgter Deposition/Sedimentation von größeren und schwereren Partikeln. Die feinen Bodenpartikel besitzen im Vergleich zu den größeren Partikeln wesentlich größere Oberflächen und damit mehr Adsorptionsflächen für adsorptiv bindende Stoffe (He & Walling 1996, Atalay 2001).

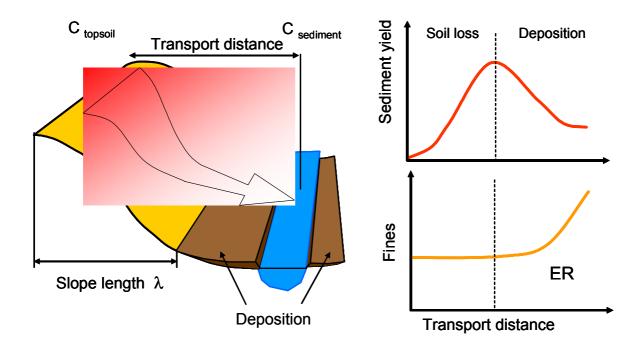


Abb. 1-5: Schematische Darstellung des Erosionsprozesses: Erosion, Transport und Deposition (links). Aufgrund der Deposition von schwereren und größeren Partikeln kommt es zu einer Zunahme der Feinstpartikel (rechts) (aus Fuchs 2007)

Hochwasserrückhaltebecken (HRB)

HRB sind Stauanlagen, die zum vorübergehenden Rückhalt von Hochwasser in Gewässern, Trockentälern und Mulden dienen (DIN 19700). Sie bestehen aus einem Absperrbauwerk (Damm) und einem Staubecken. Ziel eines HRB ist es, Schäden infolge von Hochwasserabflüssen für die Unterlieger zu minimieren. Die HRB lassen sich anhand von Größe (Höhe des Absperrbauwerkes), Lage zum Gewässer (Hauptschluss oder Nebenschluss) und der Betriebsform klassifizieren. Bei der Betriebsform kann zwischen ungesteuerten und gesteuerten und zwischen HRB mit Dauerstau bzw. ohne Dauerstau, sog. Trockenbecken, unterschieden werden (Giesecke 2000). Im Rahmen dieser Untersuchungen wurden von sehr kleinen Becken (z. B. HRB Babstadt) bis hin zu mittleren Becken (z. B. HRB Neuenstein) ein breites Größenspektrum an HRB berücksichtigt. Alle untersuchten HRB wurden im Hauptschluss betrieben. Bei den untersuchten HRB handelte es sich aus methodischen Gründen um Trockenbecken (siehe Kapitel 2.2.3).

In Baden-Württemberg gibt es insgesamt etwa 650 Hochwasserrückhaltebecken, von denen etwa 23 % im Dauerstau betrieben werden. Bei der überwiegenden Mehrzahl der HRB, nämlich 76 %, handelt es sich um Trockenbecken (LUBW 2006, Stand 12/2006).

1.3 Naturräumliche Gliederung und Bodenregionen in Baden-Württemberg

In diesem Kapitel sollen die untersuchten Standorte hinsichtlich ihrer naturräumlichen bzw. bodenregionstypischen Lage gruppiert und eingeordnet werden. Als Grundlage wird dafür

der Wasser- und Bodenatlas Baden-Württemberg (WaBoA 2004) verwendet. Die 66 naturräumlichen Haupteinheiten lassen sich zu 13 naturräumlichen Haupteinheitsgruppen aggregieren:

- (1) Subalpines Jungmoränenland,
- (2) Donau-Iller-Lech-Platte,
- (3) Schwäbische Alb,
- (4) Schwäbisches Keuper-Lias-Land,
- (5) Fränkisches Keuper-Lias-Land,
- (6) Gäuplatten im Neckar- und Tauberland,
- (7) Mainfränkische Platten,
- (8) Odenwald, Spessart, Südrhön,
- (9) Schwarzwald,
- (10) Hochrheingebiet,
- (11) Südliches Oberrhein-Tiefland,
- (12) Mittleres Oberrhein-Tiefland und
- (13) Nördliches Oberrhein-Tiefland.

In Abb. 1-6 sind die Flächen und das Bodenerosionsrisiko der unterschiedlichen naturräumlichen Haupteinheiten von Baden-Württemberg dargestellt (Gündra et al. 1995). Unter dem Bodenerosionsrisiko ist der Quotient aus berechnetem zu tolerierbarem Bodenabtrag zu verstehen (Gündra et al. 1995). Liegt das Bodenerosionsrisiko über 1, so ist der berechnete Bodenabtrag höher als der tolerierbare Bodenabtrag. Aus der Abb. 1-6 lassen sich durch die Überlagerung der einzelnen Flächen mit dem jeweiligen Bodenerosionsrisiko naturräumliche Haupteinheiten für Untersuchungen ableiten.

Einen Großteil der Fläche Baden-Württembergs machen mit 25,6 % die Neckar- und Tauber-Gäuplatten aus. Aufgrund von untergeordneter ackerbaulicher Nutzung sind der Schwarzwald und die Schwäbische Alb für Untersuchungen ungeeignet. Die drittgrößte naturräumliche Haupteinheit stellt mit 14,0 % das Schwäbische Keuper-Lias-Land dar. Dieses und das Subalpine Jungmoränenland sind aufgrund ihres vergleichsweise hohen Bodenerosionsrisikos und der flächenmäßigen Bedeutsamkeit ebenfalls für Untersuchungen gut geeignet. Trotz des hohen Bodenerosionsrisikos von Hochrheingebiet, Odenwald, Spessart und Fränkisches Keuper-Lias-Land eignen sich diese Haupteinheiten aufgrund ihrer geringen flächenmäßigen Anteile an der Gesamtfläche von Baden-Württemberg nur wenig für repräsentative Untersuchungen.

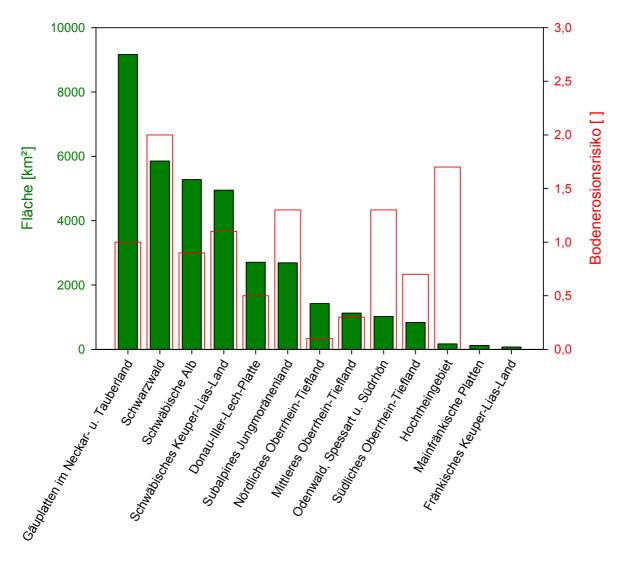


Abb. 1-6: Flächen und Bodenerosionsrisiko der 13 naturräumlichen Haupteinheiten von Baden-Württemberg (Daten aus Gündra et al. 1995)

Im Folgenden sollen die Naturräume, in denen Untersuchungen durchgeführt wurden, den unterschiedlichen Einheiten zugeordnet werden. Weitere Informationen zur Auswahl der einzelnen Standorte sind in Kapitel 2.1 beschrieben.

Gäuplatten im Neckar- und Tauberland

- Kraichgau
- Hohenlohe (die Standorte in der Kocher-Jagst-Ebene und der Hohenloher-Haller-Ebene wurden zu "Hohenlohe" zusammengefasst.)

Schwäbisches Keuper-Lias-Land

• Südwestliches Schwäbisches Albvorland (im Weiteren als "Albvorland" bezeichnet. Obwohl der Standort "HRB Gunningen" eigentlich zum Naturraum "Baar" und somit zur naturräumlichen Haupteinheit "Gäuplatten im Neckar- und Taubertal gehört, wurde er aufgrund seiner geographischen Lage in das "Albvorland" eingruppiert)

Subalpines Jungmoränenland

• Oberschwäbisches Hügelland (im Weiteren als "Oberschwaben" bezeichnet)

Anstelle von Naturraum wird im weiteren Text der Begriff "Bodenregion" im Zusammenhang mit den verschiedenen Standorten innerhalb einer bestimmten Region benutzt, um den Bezug zu den Böden herzustellen. Der Begriff Bodenregion orientiert sich stark an den naturräumlichen Einheiten, fasst jedoch nach dem Wasser- und Bodenatlas Baden-Württemberg (WaBoA 2004) größere Einheiten zusammen.

2 Material und Methoden

2.1 Auswahl der untersuchten Standorte

In diesem Kapitel wird die Vorgehensweise bei der Auswahl der untersuchten Standorte beschrieben. Die Auswahl der einzelnen Standorte fand durch mehrere Teilschritte statt, die im Folgenden näher erläutert werden und in

Abb. 2-1 zusammenfassend dargestellt sind.

Auswahl von repräsentativen Suchräumen

尣

Bildung einer Schnittmenge aus Suchräumen und HRB

Û

Einengen der Treffer durch Auskünfte bei den HRB-Betreibern

尣

Einengen und Vorauswahl von potentiell geeigneten Standorten bei einer ersten Vorortbesichtigung

 $\hat{\Gamma}$

Endauswahl der Standorte bei einer bodenkundlichen Vorortbesichtigung

Abb. 2-1: Schematische Übersicht bei der Vorgehensweise zur Auswahl der untersuchten Standorte

In Zusammenarbeit mit Herrn Dr. Frank Waldmann vom Landesamt für Geologie, Rohstoffe und Bergbau in Freiburg (LGRB) wurden für Baden-Württemberg Suchräume ausgewiesen (Tab. 2-1). Dazu wurden die Einheiten "Acker" und "komplexe Parzellenstruktur" aus Corine-Landcover ausgeschnitten und mit ausgewählten BÜK 350-Einheiten verschnitten (Abb. 2-2). Mit den einzelnen Suchräumen wird versucht, das Spektrum an verschiedenen Bodenarten insbesondere bezüglich der daraus resultierenden unterschiedlichen Ton- und Schluffgehalte in den Oberböden Baden-Württembergs auf einer Landesfläche von ca. 35.752 km² repräsentativ abzudecken.

Auswahl der Suchräume²

Für eine Vorauswahl der in Frage kommenden Hochwasserrückhaltebecken wurden von Herrn Dr. Frank Waldmann vom Landesamt für Geologie, Rohstoffe und Bergbau (LGRB) bevorzugte Suchräume ausgewiesen (Waldmann 2006). Neben einer vorherrschenden Ackernutzung im Einzugsgebiet der HRB, sollen die Suchräume das Spektrum der verschiedenen Bodenarten in Baden-Württemberg weitestgehend abdecken. Zusätzlich sollen die Einzugsgebiete der HRB relativ homogene Böden und einen einheitlichen geologischen Untergrund aufweisen.

Zur Umsetzung wurden die Landnutzungseinheiten "Acker" und "komplexe Parzellenstruktur" aus Corine-Landcover (Ministerium für Umwelt und Verkehr Baden-Württemberg & Landesanstalt für Umweltschutz Baden-Württemberg 2004) mit ausgewählten Bodeneinheiten der Bodenübersichtskarte 1 : 350.000 (BÜK 350) verschnitten. Das Ergebnis ist zusammenfassend in Tab. 2-1 und Abb. 2-2 dargestellt.

Tab. 2-1: Lage, Geologie und Bodenart der Suchräume in Baden-Württemberg

Suchraum	Lage	Geologie	Bodenart	Auswahl
1	Westlicher Kraichgau	Löss	schluffig	ja
2	Östlicher Kraichgau, Neckarbecken	Löss	schluffig-lehmig	ja
3	Bodenseegebiet	Jungmoräne	lehmig	ja
4a	Umgebung Schwäbisch Hall	Gipskeuper	tonig-lehmig	nein
4b	Hohenlohe	Lettenkeuper, z. T. mit Lösslehmbedeckung	tonig-lehmig und schluffig-lehmig	ja
4c	Südwestliches Albvorland	Unter- und Mitteljura	tonig-lehmig	ja
5a	Nordschwarzwald	Oberer Buntsandstein	sandig-lehmig	nein
5b	Waldberge	Stubensandstein	sandig-lehmig	nein

In Abb. 2-2 dargestellt sind "meist" ackerbaulich genutzte Flächen mit mehr oder weniger ähnlichen Böden in einzelnen Gebieten. Nicht dargestellt sind tonige Weinbergböden aus dem Gipskeuper, z. B. im Zabergäu und bei Heilbronn.

Das Oberrheingebiet wurde bei der Auswahl der Suchräume nicht berücksichtigt. Häufig wechseln im Einzugsgebiet der HRB am westlichen Schwarzwaldrand sowohl die Landnutzungen (Acker, Grünland, Reben, Wald) als auch die Böden und der geologische Untergrund stark. Somit ist es schwierig, für die einzelnen Einzugsgebiete eine mittlere Bodenart und einen mittleren Schwermetallstatus zu bestimmen, der dann mit den in den HRB gemessen Werten verglichen werden kann. Zusätzlich können in den Einzugsgebieten Areale vorkommen (z. B. Halden), die aufgrund der historischen Bergbautätigkeit deutlich höhere Schwermetallbelastungen aufweisen.

_

² Text weitgehend dem LGRB-Zwischenbericht entnommen (Waldmann 2006)

Auswahl von geeigneten HRB

In einem zweiten Schritt wurden die Suchräume mit den Standorten von etwa 600 HRB in Baden-Württemberg überlagert (Abb. 2-2). Die Daten zu den HRB wurden von der LUBW bereitgestellt (LUBW 2005b). Anhand dieser Informationen (Abb. 2-2) und anhand von Auskünften der HRB-Betreiber fand eine Auswahl an potenziellen Untersuchungsstandorten statt. Dabei wurden die HRB nach den folgenden Kriterien ausgewählt:

- 1. Art der Betriebsform: Trockenbecken
- 2. Einzugsgebietsgröße des HRB < 10 km²
- 3. Häufigkeit des Beckeneinstaus
- 4. Bodeneigenschaften im Einzugsgebiet des HRB
- 5. Sonstige Charakteristika im Einzugsgebiet des HRB, z. B. Landnutzung im Einzugsgebiet (Grünlandanteil, Bebauung).

Bei einer Erstbegehung wurde die generelle Eignung verschiedener HRB und Einzugsgebiete untersucht. Dabei wurden die oben angeführten Kriterien vor Ort überprüft und beispielsweise die Erosionsanfälligkeit des Einzugsgebietes, Beschaffenheit des HRB-Stauraumes hinsichtlich Sedimentablagerungen und der Anteil sowie die Lage von Acker-, Grünland- und Waldflächen aufgenommen. Im Rahmen einer anschließenden bodenkundlichen Begehung mit Herrn Dr. F. Waldmann (LGRB) fand dann die endgültige Auswahl der Standorte statt.

In Abb. 2-2 sind die Suchräume und die Lage der HRB in Baden-Württemberg zusammenfassend dargestellt.

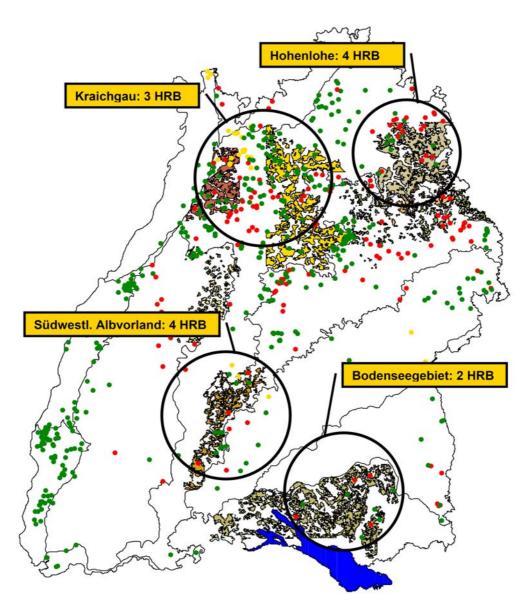


Abb. 2-2: Lage der Suchräume, der HRB und der ausgewählten Untersuchungsstandorte in Baden-Württemberg

(Grüne Punkte: Trockenbecken, rote Punkte: HRB im Dauerstau, gelbe Punkte: keine Angaben)

Die Auswahl der Beprobungsflächen der beiden größten EZG Neuenstein und Mittelurbach fand in Zusammenarbeit mit dem Bodenkundler Dr. Norbert Billen statt. Die genaue Vorgehensweise bei der Auswahl der Beprobungsflächen im Einzugsgebiet der HRB und die Sedimentprobenahme in den Stauräumen der HRB wird in Kapitel 2.2.1 und Kapitel 2.2.2 beschrieben.

2.2 Probenahmen

Zeitliche Durchführung der Probenahmen

Die erste Boden- und Sedimentprobenahme wurde exemplarisch am HRB Grombach im Mai und Juli 2005 durchgeführt. Alle weiteren Boden- und Sedimentprobenahmen wurden in Form von Kampagnen an mehreren Tagen hintereinander durchgeführt, um möglichst saisonal vergleichbare Bedingungen vorzufinden.

Aus den Bodenregionen Kraichgau Hohenlohe wurden die Boden- und Sedimentproben Anfang bis Mitte Mai 2006 genommen. Die Proben aus dem Albvorland und Oberschwaben wurden Anfang Juni 2006 (Sedimente) und Mitte Oktober 2006 (Bodenproben) genommen (siehe Anhang).

Übersicht über die im Projektzeitraum genommenen Proben

In Tab. 2-2 sind die während des Projektzeitraumes an den 13 verschiedenen Standorten genommenen Proben zusammenfassend dargestellt. In allen vier untersuchten Bodenregionen konnte eine ausreichend große Anzahl geeigneter Standorte gefunden werden. Insgesamt wurden 135 Boden-, 101 Sediment-, 29 Hochwasserproben genommen und in die S-, U- und T-Fraktion aufgetrennt.

Tab. 2-2: Zusammenstellung der Proben, die an den einzelnen Standorten der HRB genommen wurden

Bodenregion	HRB Standort	Boden	Sediment	Hochwasser	Ereignis
Kraichgau	Eichtersheim	10	12	-	-
	Grombach	9	5	5	-
	Babstadt	6	1	2	-
Hohenlohe	Neuenstein	16	9	15	4 (55)
	Berndshausen	11	12	1	-
	Hermuthausen	7	6	1	-
	Seidelklingen	13	9	1	-
Albvorland	Haigerloch	8	6	1	-
	Grosselfingen	10	6	1	-
	Spaichingen	10	11	-	-
	Gunningen	11	6	-	-
Oberschwaben Fleischwangen		11	9	1	-
	Mittelurbach	13	9	1	-
Bodenregionen	Kraichgau	25	18	7	-
	Hohenlohe	47	36	18	4 (55)
	Albvorland	39	29	2	-
	Oberschwaben	24	18	2	-
Gesamt	N Mischproben	135	101	29	4 (55)
	N Teilproben	2700	909	29	-
	Fraktioniert (S, U, T)	405	303	87	-

An 10 von 13 HRB-Standorten konnten Hochwasserproben genommen werden. Aufgrund eines Wetterumschwunges, verbunden mit Schneeschmelze und starkem Regen, konnte am 9. und 10. März 2006 an fast allen HRB-Standorten mit Hilfe einer mobilen Wasserpumpe Hochwasser abgepumpt werden. Lediglich in Gunningen und Spaichingen kam es wegen niedrigeren Temperaturen zu keinem Hochwasser. Ebenso konnte am Standort Eichtersheim, einem von vier mit automatischen Probenehmern und Abflussmessgeräten ausgerüsteten Standorten, keine Hochwasserprobe genommen werden. Im Gegensatz dazu konnten am Standort Neuenstein insgesamt 15 Hochwasserproben genommen und die Wasserstände aufgezeichnet werden. Zusätzlich konnten bei vier Hochwässern insgesamt 55 Ereignisproben (Beprobung eines Hochwasserereignisses im Abstand von 90 Minuten) aus der jeweiligen Hochwasserwelle abgepumpt werden. Weitere Angaben zu den

beprobten Hochwässern wie z. B. Probenahmezeitpunkt, abgepumptes Wasservolumen etc. finden sich im Anhang G. Bezüglich der Einstauhäufigkeit der einzelnen HRB waren die Aussagen der HRB-Betreiber zutreffend und hilfreich.

2.2.1 Beprobung der Oberböden im Einzugsgebiet

Ziel der durchgeführten Feldbegehungen war es, je nach Einzugsgebietgröße etwa 10 repräsentative Beprobungsflächen im Einzugsgebiet auszuwählen. Bei der Auswahl dieser Beprobungsflächen wurden verschiedene Erhebungsmethoden zur Erfassung der erosions- und abflussbeeinflussenden Merkmale im Einzugsgebiet angewendet (s. Tab. 2-3).

Tab. 2-3: Angewandte Erhebungsmethoden zur Auswahl der Beprobungsflächen ("Liefergebiete") in den Einzugsgebieten

Erosions- und abflussbeeinflussende Merkmale	Erhebungsmethoden		
Einzugsgebietgrenzen	Topographische Karte, Geländeaufnahme		
Geländerelief	Topographische Karte, Geländeaufnahme		
Geologie	Geologische Karte, Geländeaufnahme		
Bodentypen (Leitböden)	Bodenübersichtskarte 1 : 200 000		
Bodenart des Oberbodens	Bodenschätzungskarte, Fingerprobe		
Kalkgehalt des Oberbodens	Salzsäuretest (10 % HCl)		
Bewirtschaftungstyp (Acker, Grünland, Wald)	Satellitenbilder, Geländeaufnahme		
Abflussbeeinflussende Strukturen (Grünstreifen, Feldhecken, Feldwege etc.)	Satellitenbilder, Geländeaufnahme		
Erosionsspuren	Satellitenbilder, Geländeaufnahme		

In Feldskizzen wurde die vorläufige Auswahl von evaluierten Beprobungsflächen eingezeichnet. Die endgültige Auswahl fand dann nach den folgenden festgelegten Kriterien statt:

- 1. "Liefergebiet": Deutlich erkennbare Erosion und somit Eintrag von Bodenmaterial bis in den Stauraum des HRB
- 2. Gleichmäßige Verteilung der Liefergebiete auf das gesamte Einzugsgebiet
- 3. Repräsentative Auswahl der Beprobungsflächen hinsichtlich der Boden- und Kulturarten.

Bei den Oberbodenbeprobungen in den Einzugsgebieten wurden von den ausgewählten Acker- und Grünlandflächen Proben entnommen. Um die Repräsentativität der Beprobungsflächen einzuhalten, wurden folgende Aspekte berücksichtigt:

1. Die Oberboden-Teilproben wurden mit Hilfe einer Plastikschaufel in einer Bodentiefe von 0-5 cm entnommen, da es sich hierbei um die besonders abtragsgefährdete

Bodenschicht handelt (bei der Grünlandflächenbeprobung wurde die Grasnarbe zuvor entfernt).

- 2. Keine Probenahme auf flächenbegrenzenden Kuppen oder Sattellagen, mindestens 15 m Abstand von Randstrukturen (Ackerrand, Feldwege, Wald, etc.).
- 3. Ergänzende Beprobung von Tiefenbereichen nach dem ersten und zweiten Drittel entlang des Gewässergerinnes (ggf. Beprobung zusätzlicher Tiefenbereiche).

Die eigentliche Entnahme der Oberbodenproben wurde dann nach den folgenden Gesichtspunkten vorgenommen:

- 1. Beprobung entlang von 2 Beprobungslinien, die etwa 50 m auseinander liegen.
- 2. Entlang jeder Beprobungslinie wurden im Abstand von etwa 20-50 m insgesamt 10 Teilproben genommen, wobei die Beprobungsflächen an die jeweilige Größe des zu beprobenden Ackers bzw. Grünlandes angepasst wurden.
- 3. Eine Oberboden-Mischprobe setzt sich aus 20 Teilproben zusammen, die von den beiden Beprobungslinien stammen.

Pro Mischprobe wurde etwa 400 g Bodenmaterial entnommen wurde (Abb. 2-3).

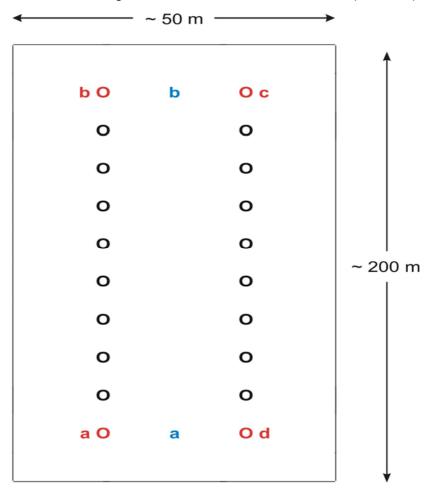


Abb. 2-3: Schematische Darstellung der Oberbodenprobenahme An den Kreisen wurde jeweils eine Teilprobe genommen. Die insgesamt 20 Teilproben wurden dann zu einer Mischprobe vereinigt. Die Kleinbuchstaben stellen die Punkte dar, an denen die X/Y-Koordinaten aufgenommen wurden.

Zur genauen Aufnahme der Probenentnahmepunkte wurde ein Garmin GPS 12 (globales Positionsbestimmungssystem) verwendet. Dazu wurden - je nach Personenstärke bei der Beprobung - die X/Y-Koordinaten zwischen oder an den Start- und Endpunkten der beiden Beprobungslinien aufgenommen.

2.2.2 Beprobung der Sedimente in den Stauräumen der HRB

Die Sedimentproben wurden aus den Stauräumen der einzelnen HRB entnommen. Dabei wurden entlang eines Transektes im Zulaufbereich, in der Mitte und im Ablaufbereich des Stauraumes Bohrstockproben aus jeweils drei Tiefenstufen genommen (0-20 cm, 20-40 cm, 40-60 cm). Bei einigen Proben wurden die Tiefenstufen aufgrund von klar abgrenzbaren Schichten variiert (z. B. 0-15 cm anstelle von 0-20 cm). An jedem Probenahmeort wurden 3 Teilproben im Abstand von etwa 1,5 m entnommen. Eine Teilprobe setzt sich wiederum aus 3 Bohrstockproben zusammen, so dass sich jede Sedimentmischprobe aus 9 Einzelproben zusammensetzt.

An den HRB-Standorten Grombach und Babstadt (beide Kraichgau) konnte aufgrund der geringen Mächtigkeit der Sedimentschicht keine Bohrstockbeprobung durchgeführt werden. Hier wurden an verschiedenen Stellen die deutlich abgesetzten Sedimente mit einer kleinen Kelle abgenommen.

Wie bei den Bodenproben wurden die X/Y-Koordinaten mit Hilfe eines GPS-Gerätes aufgenommen.

2.2.3 Hochwasserbeprobungen

Ziel der Hochwasserbeprobungen war das Erfassen der Feststoffe, die aufgrund der zu geringen Aufenthaltszeit des Wassers nicht sedimentieren und deshalb aus dem HRB ausgetragen werden. Im Rahmen dieses Forschungsvorhabens kamen drei unterschiedliche Methoden zur Hochwasserbeprobung zum Einsatz, die im Folgenden beschrieben werden.

Das Eingraben von Probenehmern (220 I Regentonnen) im HRB-Stauraum erwies sich als unpraktikabel. Zum einen schwammen die Probenehmer durch den hohen Auftrieb beim Beckeneinstau auf, da sich die Spezialheringe im gesättigten Stauraumboden lösten, zum anderen mussten häufig Mäuse und andere Tiere aus den Probenehmern entfernt werden, die sich trotz Drahtgitter in diese verirrten.

Hochwasserbeprobung mit stationären Probenehmern

Insgesamt wurden vier HRB mit Probenehmern am Ablauf ausgestattet (Abb. 2-4). Neben den untersuchten HRB im Kraichgau wurde zusätzlich das HRB in Neuenstein (Hohenlohe) ausgewählt, da dieses besonders häufig eingestaut ist.

Bei den Probenehmern handelt es sich um batteriebetriebene Tauchpumpen, die über Schwimmschalter gesteuert werden. Steigt der Wasserspiegel im Gewässer über einen kritischen Wert schwimmt der Schwimmschalter auf und schließt den Stromkreis. Die beiden Tauchpumpen, die durch ein Schmutzsieb vor dem Verstopfen geschützt sind, befördern das

Wasser in einen 1000 I-Behälter (Abb. 2-4). Da die Tauchpumpen durch die abrasive Wirkung der Feststoffe im Hochwasser sehr leicht ausfallen können hat sich die Verwendung von zwei Pumpen als vorteilhaft erwiesen.

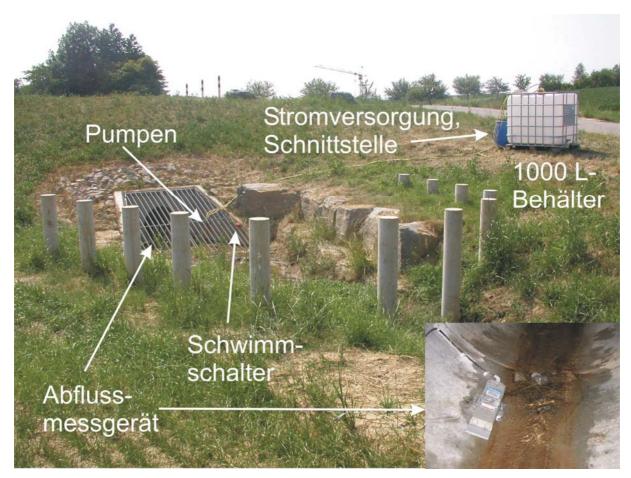


Abb. 2-4: Probenahmesystem mit Abflussmessgerät, Schwimmschalter, Tauchpumpen, und 1000 I-Behälter zur Beprobung eines Hochwasserereignisses am HRB Langengraben in Grombach, östlicher Kraichgau

Mit den Probenehmern wurden Abflussmessgeräte zum Erfassen der Hochwasserabflüsse installiert (Abb. 2-4). An den HRB-Standorten im Kraichgau kamen Ultraschall-Fließgeschwindigkeitsmesser (Starflow 128k, Unidata, Europa) und in Neuenstein ein Ultraschall-Pegelmessgerät (The Probe PL-517-3, Milltronics/Unidata, Europa) zum Einsatz. Mit den Abflussmessgeräten kann jede Probenahme dem Abflussgeschehen eindeutig zugeordnet werden. Die beprobten Hochwässer wurden in 1000 I Container oder in Regentonnen aus Plastik (Größen von 300 I bis 500 I) gepumpt.

Mehrfachbeprobung einzelner Hochwässer

Zusätzlich wurde das HRB Neuenstein mit einem Hochwasserereignis-Probenehmer (Sigma 900, American Sigma, Medina, NY, U.S.A.) zur Beprobung von Hochwasserereignissen im zeitlichen Verlauf (Zeitintervall 90 Minuten, Probenmenge ca. 1000 ml) ausgestattet. Das Auslösen der Probenahme wurde in diesem Fall über das Abflussmessgerät gesteuert. Mit diesem Probenehmer konnten von demselben Hochwasser Proben zu unterschiedlichen

Zeitpunkten entnommen werden. Aufgrund der geringen Probenmenge konnte keine Fraktionierung der Feststoffe durchgeführt werden.

Hochwasserbeprobung mit mobilen Probenehmern

Zum Abpumpen des Hochwassers an den verschiedenen HRB-Standorten, die nicht mit stationären Probenehmern ausgerüstet waren, wurde eine benzinbetriebene Wasserpumpe (Yamaha YP20GN; 1,9 kW; Schlauchanschluss 50 mm, max. Förderleistung 560 l/min, max. Ansaughöhe 7 m) eingesetzt. Die Hochwasserproben wurden in Regentonnen gepumpt. Nach dem Abpumpen wurden die Regentonnen für die Sedimentation und aus Sicherheitsgründen mit einem Deckel und Kabelbindern fest verschlossen.

Einholen der Hochwasserproben

Die Hochwasserproben wurden zur Sedimentation vor Ort belassen. Damit sollte sichergestellt werden, dass sich ausschließlich die Tonfraktion im Überstand befindet und die Sand- und Schlufffraktion komplett als Hochwassersediment sedimentiert ist. Der dazu notwendige Zeitraum wurde unter Annahme einer mittleren Wassertemperatur mit Hilfe der Stokes-Formel berechnet. Nach dieser Absetzzeit wurden die Hochwasserproben eingeholt (Abb. 2-5).

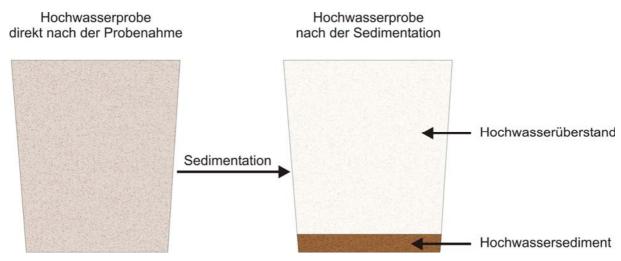


Abb. 2-5: Auftrennung der Hochwasserprobe durch Sedimentation in den Hochwasserüberstand und das Hochwassersediment Im Hochwasserüberstand befinden sich fast ausschließlich Partikel < 2 μ m.

Die sedimentierten Hochwasserproben wurden in eine Hochwasser-Überstandsprobe und in eine Hochwasser-Sedimentprobe getrennt. Dazu wurde mit einer elektrischen Wasserpumpe der Überstand in eine zweite Regentonne abgepumpt. Das Hochwassersediment wurde mittels einer Spritzflasche, die mit dem Überstandswasser befüllt wurde, in einen Eimer gespült. Von der durchmischten Überstandsprobe wurde eine Teilprobe für die weiteren Analysen entnommen. Bis zur Fraktionierung oder Analyse wurden alle Proben bei +4 °C im Kühlschrank gelagert.

2.3 Korngrößenzusammensetzung

Die Korngrößenzusammensetzung wurde mit zwei unterschiedlichen Methoden bestimmt. Mit der Becherglas-Fraktionierungsmethode wurden die Proben in die S-, U- und T-Fraktion mittels Siebung und Sedimentation aufgetrennt. Damit war es möglich, die Stoffgehalte in den einzelnen Fraktionen zu analysieren. Aus Vergleichsgründen wurden die Proben mit einem Laserpartikelmessgerät hinsichtlich der Korngrößenzusammensetzung analysiert. Darüber hinaus liefert das Laserpartikelmessgerät eine fein aufgelöste Korngrößenverteilungskurve mit der eine detaillierte Betrachtung der einzelnen Fraktionen möglich ist.

2.3.1 Fraktionierung

Mit Ausnahme der Hochwasserproben wurden alle Proben im Trockenschrank bei maximal +55 °C getrocknet und in einer Mühle gemahlen.

Bei der Fraktionierung der Oberboden- Sediment- und Hochwasserproben in die S-, U- und T-Fraktion konnte das Pipettverfahren (DIN ISO 11277), welches häufig für die Analyse von Korngrößenverteilungen in mineralischen Böden eingesetzt wird, nicht angewendet werden. Die Methode liefert keine ausreichende Tonmenge zur sicheren Bestimmung der Phosphorund der Schwermetallgehalte. Außerdem wird die Schlufffraktion nicht quantitativ von der Tonfraktion getrennt, so dass eine separate Phosphor- und Schwermetallanalyse nicht möglich ist.

In Anlehnung an die DIN ISO 11277 wurde eine Methode entwickelt, bei der genügend Ton für die Analysen gewonnen werden kann. Bei dieser Methode wird zunächst die Sandfraktion durch Nasssiebung entfernt. Die Tonfraktion wird von der Schlufffraktion in Bechergläsern durch abdekantieren, nach Sedimentation, abgetrennt. Für die Sedimentation der Bodenpartikel gilt das Stokesche Gesetz:

 $t = 18 \eta h / [(\rho s - \rho w) g dp^2]$

Glg. 2.1

t: Sinkzeit eines Partikels mit dem Durchmesser dp [s]

η: Dynamische Viskosität des Wassers bei Prüftemperatur [mPa/s]

h: Probenahmetiefe [cm]

os: Mittlere Partikeldichte in [Mg/m³] (zu 2,65 angenommen)

ρw: Dichte der die Bodensuspension enthaltende Flüssigkeit [Mg/m³](zu 1,00 angenommen)

g: Fallbeschleunigung [cm/s²] (zu 981 angenommen)

dp: Äquivalentkorndurchmesser des betreffenden Partikels [mm]

Um eine reine Schlussfraktion zu erzeugen, wird der Überstand nach einer vorgegebenen Zeit dekantiert und das Sediment resuspendiert. Dieser Vorgang wird wiederholt bis der Überstand klar und die Schlufffraktion somit frei von Tonpartikeln ist. Je nach Probe sind hierzu 15-40 Wiederholungen erforderlich. Bei den Bodenproben ist die Tonabtrennung am schnellsten abgeschlossen. Bei den Hochwasserproben waren je nach Probe 30-40

Sedimentationsschritte notwendig. Dies macht die Fraktionierungsmethode sehr zeitaufwändig, da jeder Sedimentationsschritt etwa vier Stunden Zeit benötigt.

Das verbleibende Ton-Wassergemisch wird mit Hilfe von NaOH auf einen pH-Wert von 9,5 eingestellt und der Ton im Überstandswasser mit einem Flockungsmittel (Polyaluminiumchloridsulfatlösung) ausgeflockt. Damit ist gewährleistet, dass der Phosphor und die Schwermetalle an den Tonpartikeln adsorbiert bleiben und nicht in Lösung gehen. Nach der Trocknung bei +105 °C werden die einzelnen Fraktionen gewogen. Da die Probenaufarbeitung sehr arbeits- und zeitintensiv ist, wurden meistens etwa 30 oder 60 Proben parallel fraktioniert.

Im Folgenden werden die einzelnen Aufarbeitungsschritte der Fraktionierungsmethode beschrieben:

Dispergierung, Nasssiebung und Fraktionierung

- 1. 50 g der getrockneten Probe in 250 ml (1:5) einer 0,001 M KCl-Lösung (0,07456 g KCl in 1000 ml H_2O_{demin}) für 1 Stunde lösen.
- 2. Probe für 3 min im Ultraschallbad behutsam dispergieren.
- 3. Die Sandfraktion mit einem 63 µm Sieb abtrennen.
- 4. Das U-T-H₂O_{demin}-Gemisch im Becherglas mit H₂O_{demin} einen Sedimentationszyklus (abhängig von der Wasserhöhe) sedimentieren lassen. Dann 5,0 cm über dem Sediment das Becherglas markieren und mit H₂O_{demin} bis zur Markierung auffüllen.
- 5. Das U-T-H₂O_{demin}-Gemisch durchmischen, so dass alle Partikel suspendiert sind.
- 6. Jetzt wird je nach Versuchstemperatur und gewählter Wasserhöhe bzw. Fallhöhe die entsprechende Sedimentationszeit gewählt. Bei 20,0 °C ergibt sich bei einer Fallhöhe von 5,0 cm eine Fallzeit von 3 h 52 min 35 s für Partikel > 2,0 μm. Das bedeutet, dass nach dieser Zeit nur noch Tonpartikel im Überstand vorhanden sind.
- 7. Nach Ablauf der jeweiligen Sedimentationszeit wird der Überstand abdekantiert.
- 8. Der Überstand, das T-H₂O_{demin}, wird in 10 I-Eimern gesammelt.
- 9. Die Sedimentation wird solange wiederholt, bis der Überstand klar ist.
- 10. Das Tonwasser wird im 10 I-Eimer mit einem Löffel gerührt, ohne den Bodensatz komplett zu resuspendieren.
- 11. Mit NaOH wird der pH-Wert auf etwa 9,5 einstellen, da das Flockungsmittel erst ab diesem pH-Bereich effizient flockt.
- 12. Auf 10 I T-H₂O_{demin} wird ca. 2-3 ml Flockungsmittel PAX-XL9 (Kemira Chemie, Alzenau, Deutschland) durch vorsichtiges Zupipettieren mit einem Löffel eingerührt. Eine Flockenbildung sollte direkt sichtbar sein (bei Problemen gegebenenfalls Dosis erhöhen und den pH-Wert kontrollieren).
- 13. Nach erfolgter Einmischung wird das T-H₂O_{demin} für mehrere Stunden, besser über Nacht, zum Sedimentieren gestellt.
- 14. Danach wird der Überstand abgehebert und die T-Fraktion beispielsweise in eine Aluschale überführt.

15. Die S-, U- und die T-Fraktion werden bei 105 °C getrocknet und den weiteren Analysen zugeführt.

Um die Versuchsbedingungen bei den unterschiedlichen Proben konstant zu halten, wurde die Sedimentationszeit einheitlich auf Basis einer mittleren Korndichte von 2,65 mg/l berechnet. Die Korndichte lag in etwa in diesem Bereich, was exemplarisch durch Kapillarpyknometermessungen überprüft wurde (DIN 18124). Eine Überprüfung der teilweise gequollenen Hochwasserproben war nicht möglich.

Anstelle des häufig eingesetzten Dispergierungsmittels Natriumhexametaphosphat wurde in Anlehnung an Allen (1980) KCI verwendet. Aufgrund der anschließenden Phosphormessungen konnte Natriumhexametaphosphat nicht verwendet werden. Außerdem wurde auf eine Zerstörung der organischen Substanz verzichtet, um die Proben möglichst in ihrer ursprünglichen Form schonend zu fraktionieren und eine Ablösung des an die Partikel adsorbierten Phosphors und der Schwermetalle durch starke Oxidationsmittel zu verhindern.

2.3.2 Laser-Partikelmessungen

Für die Partikelmessungen wurde ein Laser-Granulometer CILAS 920 mit Trocken- und Nassdispergierung verwendet. Der Messbereich des Gerätes liegt zwischen 0,3-400 μ m, mit insgesamt 30 Größenklassen.

Von den gemahlenen und getrockneten Boden- und Sedimentproben wurden etwa 10 g in 1500 ml H₂O_{demin} suspendiert. Von den durchmischten Hochwassersedimenten wurden etwa 15 x 1,0 ml mit einer Pipette entnommen und ebenfalls in 1500 ml H₂O_{demin} suspendiert. Die Hochwasserüberstände und die Ereignisproben wurden direkt verwendet. Alle Proben wurden vorsichtig ca. 2 min im Ultraschallbad dispergiert. Vorversuche hatten gezeigt, dass dies die optimale Zeit für die Dispergierung ist - eine längere Ultraschallbehandlung führte zu keiner veränderten Korngrößenzusammensetzung. Gegebenenfalls mussten die Proben noch verdünnt werden. Gerätespezifisch wurden von jeder Probe 20 interne Messungen gemacht, aus der dann die Korngrößenzusammensetzung resultierte. Bei den Hochwassersedimentproben (5 Messungen), den Hochwasserüberstandsproben (3 Messungen) und den Ereignisproben (3 Messungen) fanden externe Mehrfachmessungen statt, aus denen die mittlere Korngrößenzusammensetzung errechnet wurde. Bei den Sedimentproben waren externe Mehrfachmessungen nicht notwendig.

2.4 Analytik

Der Schwerpunkt der zu analysierenden Proben lag in der Bestimmung der Phosphor- und Schwermetallkonzentrationen der Gesamtproben und der fraktionierten Proben. Aufgrund der großen Probenmenge wurden für die weiteren Parameter von jedem Standort repräsentative Proben ausgewählt. Mit diesen zusätzlichen Analysen sollten wichtige Zusatzinformationen zu den einzelnen Einzugsgebieten gewonnen werden. Außerdem wurden diese Bestimmungen genutzt, um beispielsweise den Zusammenhang zwischen dem ER und dem Carbonatgehalt im Einzugsgebiet zu untersuchen.

2.4.1 Probenvorbereitung

Mit Ausnahme der Hochwasserüberstands- und Hochwasserereignisproben wurden alle Gesamtproben und die fraktionierten Proben vor der Analyse bei 105 °C getrocknet und gemahlen.

Der Feststoffgehalt der Hochwasserüberstands- und Ereignisproben wurde über den Parameter AFS nach DIN 38409 (1987) bestimmt. Für die Filtration wurden Membranfilter aus Celluloseacetat mit einer Porenweite von 0,45 µm verwendet (MEMFIL CA, membraPure, Bodenheim).

2.4.2 Phosphor- und Schwermetallanalytik

Die Bestimmung des Phosphors (Gesamtphosphor, P_{ges}) und der Schwermetalle erfolgte nach DIN EN 1346 (2000). Dabei handelt es sich um eine Bestimmung von Schlämmen und Sedimenten, bei dem die Elemente mit einem Königswasseraufschluss extrahiert und anschließend bestimmt werden.

In den Boden- und Sediment-Gesamtproben wurden die 6 Elemente Cadmium (Cd), Chrom (Cr), Kupfer (Cu), Nickel (Ni), Blei (Pb) und Zink (Zn) bestimmt. Mit dem Atomabsorptionsspektrometer (AAS) AAS 1100B wurden Cd (mit Graphitrohr) und Zn (mit Flamme) gemessen. Mit dem AAS SIMAA 6000 wurden Cr, Cu, Ni und Pb (alle mit Graphitrohr) bestimmt (beide AAS von Perkin Elmer, Überlingen, Deutschland).

Von den fraktionierten Ton- und Schluffproben wurden außerdem die P_{ges}-Konzentration und exemplarisch die Schermetallkonzentration gemessen.

Bei den Hochwasser- und Ereignisproben wurden die P_{ges} -Konzentrationen und in ausgewählten Proben die Schwermetallkonzentrationen bestimmt.

2.4.3 Pflanzenverfügbarer Phosphor (P_{CAL})

Der mittels Calcium-Acetat-Lösung extrahierte, pflanzenverfügbare Phosphor wurde nach VDLUFA (1991), A 6.2.1.1, bestimmt.

2.4.4 Carbonatgehalt

Der Carbonatgehalt kann wichtige Informationen bezüglich der Stoffadsorption an die Bodenpartikel geben und hat einen Einfluss auf die Stabilität der Bodenaggregate. Der Carbonatgehalt wurde gasvolumetrisch mittels einer Scheibler-Apparatur nach VDLUFA (1991), A 5.3.1, bestimmt. Parallel wurde der TIC (gesamter anorganisch gebundener Kohlenstoff) bestimmt und auf Calciumcarbonat umgerechnet. Dabei waren die mit den beiden Methoden erzielten Ergebnisse vergleichbar. Aufgrund der häufig verwendeten Bestimmung nach Scheibler wurden diese Werte für die weiteren Berechnungen verwendet.

2.4.5 TOC- bzw. Huminstoffgehalt

Für die Bestimmung des Huminstoffgehaltes wurde ein TOC-Analysator mit Infrarot-Detektor (Elementar TOC-Analyser, Typ: high toc, Hanau, Deutschland) verwendet. Der TOC (gesamter organisch gebundener Kohlenstoff) wird indirekt aus der Differenz zwischen TC

(gesamter Kohlenstoff) und TIC (gesamter anorganisch gebundener Kohlenstoff) ermittelt (Braun & Pionneau 1999). Mit Hilfe eines Faktors von 1,724 kann der TOC-Gehalt in den Humusgehalt umgerechnet werden (Dunger & Fiedler 1997). Bei den angegebenen Werten handelt es sich um die TOC-Konzentrationen.

3 Ergebnisse und Diskussion

3.1 Charakterisierung der untersuchten Standorte

In Tab. 3-1 sind die ausgewählten Standorte in den unterschiedlichen Suchräumen zusammenfassend dargestellt. Die Einzugsgebiete der HRB-Standorte variieren zwischen 0,6 und 10,5 km². Eine ausführliche Charakterisierung der einzelnen untersuchten Standorte ist dem Anhang C zu entnehmen.

Tab. 3-1: Merkmale der ausgewählten Hochwasserrückhaltebecken in den verschiedenen Suchräumen Baden-Württembergs

Suchraum, HRB	Gemeinde, Gemarkung	EZG [km²]	Baujahr
Kraichgau			
HRB Wiesenbach	Angelbachtal, Eichtersheim	0,7	1970er
HRB Langengraben	Bad Rappenau, Grombach	2,1	2003
HRB Hagelhöhe	Bad Rappenau, Babstadt	0,4	2003
Hohenlohe			
HRB Emmertshof	Neuenstein, Kleinhirschbach	10,5	1979
HRB Berndshausen-Siedelbach	Künzelsau, Laßbach	1,9	1972
HRB Hermuthausen -Unteres-	Ingelfingen, Hermuthausen	1,1	~1972
HRB Jagstberg 8	Mulfingen, Jagstberg	2,1	1968
Südwestliches Albvorland			
HRB Schlattäckergraben	Haigerloch, Weildorf	0,6	~1995
HRB Talbach	Grosselfingen	1,4	1970er
HRB Leidengraben	Spaichingen	~1,5	1990er
HRB Lombach	Gunningen	2,8	1990er
Bodenseegebiet			
HRB Fleischwangen	Fleischwangen	4,2	~2000
HRB Mittelurbach	Bad Waldsee, Mittelurbach	6,6	1980er

Aufgrund der unterschiedlichen Tongehalte wurde der Kraichgau in einen westlichen Suchraum mit einem mittleren Tongehalt von etwa 10 % und einen östlichen Suchraum mit einem mittleren Tongehalt von etwa 20 % unterteilt. Im westlichen Kraichgau wurde ein HRB und im östlichen Kraichgau zwei HRB für detaillierte Untersuchungen ausgewählt und mit Probenehmern und Abflussmessgeräten ausgestattet (siehe Kapitel 2.2.3).

In der Hohenlohe (mittlerer Tongehalt: etwa 25 %) und im südwestlichen Albvorland (mittlerer Tongehalt: etwa 30 %) wurden jeweils vier HRB und im Bodenseegebiet/Oberschwaben (mittlerer Tongehalt: etwa 20 %) zwei HRB ausgewählt. Wegen der geringen Anzahl an HRB und dem verhältnismäßig hohen Anteil an Dauergrünland konnten in diesem Suchraum keine weiteren geeigneten HRB gefunden werden.

Wie in Abb. 2-2 zu sehen ist, gibt es insbesondere im nordöstlichen Landesgebiet (Hohenlohe, Umgebung von Schwäbisch Hall und Waldberge) viele HRB, die im Dauerstau betrieben werden. Generell wurden HRB im Dauerstau wegen möglicher Phosphor-Rücklösung aus den Sedimenten unter anaeroben Bedingungen bei der Auswahl der HRB in den verschiedenen Suchräumen nicht berücksichtigt.

3.2 Charakterisierung der Oberbodenproben

In Abb. 3-1 und Tab. 3-2 sind die Ergebnisse der Oberbodenbeprobungen für jeden Standort und jede Bodenregion zusammenfassend dargestellt. Ein Methodenvergleich und eine Methodendiskussion bezüglich Fraktionierungsmethode zur Bestimmung der Korngrößenzusammensetzung und der Laser-Partikelmessung findet in Kapitel 3.7 statt. Insgesamt konnte mit den ausgewählten Bodenregionen und den einzelnen Standorten ein breites Spektrum an Bodeneigenschaften abgedeckt werden. Die einzelnen Parameter werden im Folgenden erläutert.

3.2.1 Korngrößenzusammensetzung

In Abb. 3-1 sind die Korngrößenverteilungen dargestellt. Daneben sind mit den Karbonatund TOC-Gehalten wichtige Kenngrößen der Bodenregionen aufgenommen.

Den größten Anteil stellt bei allen Oberbodenproben die Schlufffraktion, die von 33,8 Massen % (Fleischwangen, Oberschwaben) bis 80,7 Massen % (Grombach, Kraichgau) reicht. Insgesamt waren die Schluffanteile besonders im Kraichgau und in der Hohenlohe hoch, in den südlichen Untersuchungsstandorten spielte dagegen die Sandfraktion eine bedeutendere Rolle. Die Anteile der Sandfraktion variieren von 4,7 Massen % (Grombach, Kraichgau) bis 59,6 Massen % (Fleischwangen, Oberschwaben). Die Tonfraktion lag zwischen 6,4 Massen % (Babstadt, Kraichgau) und 26,2 Massen % (Neuenstein, Hohenlohe). Klare Tongehaltsunterschiede der Oberböden zeigen sich zwischen den nördlichen Bodenregionen mit 15,6 Massen % (Kraichgau) und 18 Massen % (Hohenlohe) und südlichen Bodenregionen mit 12,9 Massen % (Albvorland) und 7,1 % (Oberschwaben).

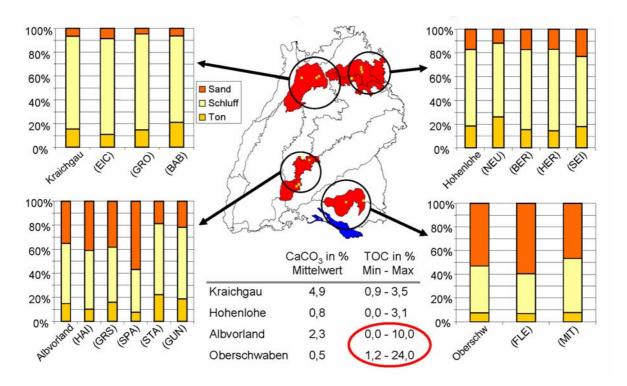


Abb. 3-1: Überblick über die standort- und bodenregiongewichtete Korngrößenzusammensetzung und Bodeneigenschaften

3.2.2 Stoffgehalte

In Tab. 3-2 sind die statistischen Kenngrößen der analysierten Bodengehalte getrennt nach Bodenregionen zusammengefasst. In Anhang E und F sind die Einzeldaten zu allen Analysen dokumentiert.

Tab. 3-2: Parameter zu den Oberbodengehalten der beprobten Flächen zusammengefasst für jeden Standort, jede Bodenregion und für Baden-Württemberg

Kraichgau 3 Standorte

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,40	4,80	2,50	0,00	19,0	13
TOC [%]	1,10	1,30	0,50	0,90	3,50	13
Pges [mg/kg]	922	906	52,0	673	1246	25
P ₂ O ₅ [mg/100g]	13,0	15,0	3,00	6,00	35,0	13
Cd [mg/kg]	0,18	0,17	0,01	0,11	0,28	25
Cr [mg/kg]	43,0	44,0	11,0	21,0	100	25
Cu [mg/kg]	17,0	15,0	1,00	9,00	24,0	25
Ni [mg/kg]	33,0	33,0	5,00	17,0	57,0	25
Pb [mg/kg]	19,0	20,0	1,00	13,0	31,0	25
Zn [mg/kg]	48,0	51,0	1,00	37,0	68,0	25

Fortsetzung von Tab. 3-2

Hohenlohe

4 Standorte

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,10	0,80	1,00	< BG	7,00	33
TOC [%]	1,80	1,80	0,30	< BG	3,10	33
Pges [mg/kg]	1.197	1.258	90,0	310	2.034	48
P ₂ O ₅ [mg/100g]	17,0	21,0	7,00	< BG	83,0	33
Cd [mg/kg]	0,20	0,24	0,06	0,15	0,67	48
Cr [mg/kg]	30,0	32,0	3,00	20,0	54,0	48
Cu [mg/kg]	16,0	17,0	3,00	8,00	39,0	48
Ni [mg/kg]	26,0	28,0	2,00	15,0	56,0	48
Pb [mg/kg]	26,0	54,0	111	18,0	819	48
Zn [mg/kg]	63,0	65,0	13,0	30,0	190	48

Albvorland

4 Standorte

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,10	2,30	4,10	< BG	24,3	23
TOC [%]	2,70	3,80	0,30	< BG	9,60	23
Pges [mg/kg]	1.479	1.410	78,0	724	1.934	34
P ₂ O ₅ [mg/100g]	7,00	10,0	3,00	< BG	28,0	23
Cd [mg/kg]	0,15	0,19	0,16	0,04	1,26	34
Cr [mg/kg]	30,0	34,0	5,00	19,0	74,0	34
Cu [mg/kg]	13,0	18,0	2,00	10,0	44,0	34
Ni [mg/kg]	25,0	33,0	12,0	15,0	104,0	34
Pb [mg/kg]	27,0	26,0	7,00	9,00	70,0	34
Zn [mg/kg]	76,0	77,0	12,0	46,0	134,0	34

Oberschwaben

2 Standorte

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,30	0,50	0,80	< BG	3,50	15
TOC [%]	1,80	3,30	5,70	1,20	23,90	15
Pges [mg/kg]	1.305	1366	141	902	2479	24
P ₂ O ₅ [mg/100g]	25,0	28,0	4,00	5,00	64,0	15
Cd [mg/kg]	0,20	0,22	0,07	0,12	0,61	24
Cr [mg/kg]	33,0	33,0	6,00	19,0	63,0	24
Cu [mg/kg]	13,0	13,0	0,00	8,00	16,0	24
Ni [mg/kg]	18,0	19,0	2,00	10,0	37,0	24
Pb [mg/kg]	16,0	17,0	1,00	12,0	26,0	24
Zn [mg/kg]	60,0	60,0	1,00	38,0	80,0	24

Baden-Württemberg (alle Standorte) 13 Standorte

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,20	2,10	1,50	< BG	24,3	84
TOC [%]	1,80	2,50	2,70	< BG	23,9	84
Pges [mg/kg]	1.251	1.235	37,0	310	2.479	131
P ₂ O ₅ [mg/100g]	15,0	19,0	2,00	< BG	83,0	84
Cd [mg/kg]	0,19	0,21	0,06	0,04	1,26	131
Cr [mg/kg]	32,0	36,0	3,00	19,0	100	131
Cu [mg/kg]	15,0	16,0	1,00	8,00	44,0	131
Ni [mg/kg]	25,0	28,0	5,00	10,0	104,0	131
Pb [mg/kg]	23,0	29,0	54,0	9,00	819,0	131
Zn [mg/kg]	61,0	63,0	6,00	30,0	190,0	131

Carbonatgehalt

Die Mittelwerte der Carbonatgehalte lagen zwischen 0,5 % in Oberschwaben und 4,8 % im Kraichgau. Die Carbonatgehalte lagen an den meisten Standorten deutlich unter 1,0 %. Lediglich in Eichtersheim (Kraichgau) und in Grosselfingen (Albvorland) waren die Carbonatgehalte mit mittleren Werten von 11,5 % und 6,6 % deutlich über den Werten der anderen Standorte. Insgesamt spielten die Carbonatgehalte bei der Beurteilung der Ergebnisse eine untergeordnete Rolle, da lediglich am Standort Eichtersheim hohe Carbonatgehalte auftraten. Dort hatten diese jedoch keinen sichtbaren Einfluss auf das Anreicherungsverhalten.

TOC-Konzentrationen

Da die Oberbodenbeprobungen größtenteils auf Ackeroberböden durchgeführt wurden, waren die TOC- bzw. Huminstoffgehalte erwartungsgemäß gering. Im Kraichgau und in der Hohenlohe waren die Mittelwerte der TOC-Gehalte mit 1,3 % bis 1,8 % deutlich niedriger als im Albvorland (3,8 %) und in Oberschwaben (3,3 %). Noch deutlicher zeigen sich die Unterschiede zwischen den nördlichen und den südlichen Standorten beim Betrachten der Maximalwerte. Diese liegen mit 9,6 % (Albvorland) und 23,9 % (Oberschwaben) deutlich über denen im Kraichgau (3,5 %) und der Hohenlohe (3,1 %). Bei genauerer Betrachtung der Maximalwerte fällt auf, dass sie allesamt aus Einzugsgebieten mit Grünlandnutzung und/oder (an)-moorigen Flächenanteilen stammen. Der höchste TOC-Gehalt stammt vom Standort Fleischwangen, in dessen Einzugsgebieten sowie auf deren Einfluss auf die ER wird in Kapitel 3.7 detailliert eingegangen.

Phosphorkonzentrationen (P_{qes} und P_{CAL})

Die P_{qes}-Konzentrationen der Oberböden lagen im südlichen Baden-Württemberg mit $1.366 \pm 141 \text{ mg/kg}$ (Oberschwaben) und $1.410 \pm 78 \text{ mg/kg}$ (Albvorland) höher als im nördlichen Baden-Württemberg mit 906 ± 52 mg/kg (Kraichgau) und 1.258 ± 90 mg/kg (Hohenlohe). Die P₂O₅-P-Konzentrationen lagen in den Bodenregionen zwischen 100 mg/kg (Albvorland) und 280 mg/kg (Oberschwaben). Der Vergleich zwischen pflanzenverfügbaren P₂O₅-P-Konzentrationen und den P_{ges}-Konzentrationen in den Gesamtproben der Oberböden macht deutlich, dass nur ein vergleichsweise geringer Anteil des gesamten P-Gehaltes im Boden den Pflanzen zur Verfügung steht. In den meisten Fällen sind deutlich mehr als 75 % des im Boden befindlichen Phosphors an Bodenpartikel gebunden und kann als vergleichsweise "inert" bezeichnet werden.

Schwermetallkonzentrationen

Der Vergleich der mittleren Oberbodengehalte der untersuchten Standorte (s. Tab. 3-2) ergibt metallspezifisch unterschiedliche Differenzierungen. Die Spannbreite der Cadmiumgehalte in den verschiedenen Bodenregionen mit 0,17 mg/kg (Kraichgau) und 0,24 mg/kg (Hohenlohe) ist beispielsweise gering. Beim Chrom reichten die mittleren Konzentrationen von 32 mg/kg (Hohenlohe) bis 44 mg/kg (Kraichgau). Auch beim Kupfer war die Spannbreite der Messwerte mit 13 mg/kg (Oberschwaben) bis 18 mg/kg (Albvorland) als

gering zu bezeichnen. Beim Nickel war die Spannbreite mit Werten von 19 mg/kg (Oberschwaben) bis 33 mg/kg (Kraichgau, Albvorland) in einem mittleren Bereich. Einen großen Wertebereich zeigten die Bleiwerte auf, die bei den Bodenregionen zwischen 17 mg/kg (Oberschwaben) und 54 mg/kg (Hohenlohe) lagen.

Insgesamt ist der an einem Standort vorgefundene Wertebereich deutlich größer als die räumlichen Unterschiede, die sich aus den verschiedenen Bodenregionen ableiten lassen. Einzelne Standorte fallen mit besonders hohen Konzentrationen auf, z. B. Seidelklingen (Cd, Cu, Ni) und Grosselfingen (Cu, Ni, Zn) mit jeweils 3 überdurchschnittlichen Schwermetallkonzentrationen. Zwei Elemente waren am Standort Babstadt (Cr, Ni) vergleichsweise zu hoch.

In Bezug auf die Schwermetalle ist ein Vergleich der in diesem Vorhaben gemessenen Oberbodenkonzentrationen mit der für Baden-Württemberg von Waldmann (2006) auf breiter Datenbasis durchgeführten statistischen Betrachtung von Schwermetallgehalten ackerbaulich genutzter Böden möglich.

Tab. 3-3: Schwermetallgesamtgehalte ackerbaulich genutzter Oberböden (nach Waldmann 2006)

Kraichgau		Median	Mittelwert	STABW	MIN	Max.	Anzahl
	Cd [mg/kg]	0,16	0,41	1,58	< BG	38,3	1.846
	Cr [mg/kg]	34	38	24	1	467	1.807
	Cu [mg/kg]	18	23	27	6	367	1.801
	Ni [mg/kg]	27	28	8	5	77	1.810
	Pb [mg/kg]	23	33	89	0	2.202	1.842
	Zn [mg/kg]	63	110	513	1	14.319	1.840
Hohenlohe		Median	Mittelwert	STABW	MIN	Max.	Anzahl
	Cd [mg/kg]	0,20	0,26	0,26	< BG	2,20	200
	Cr [mg/kg]	33	35	16	7	89	197
	Cu [mg/kg]	20	23	16	1	170	197
	Ni [mg/kg]	26	27	12	5	57	197
	Pb [mg/kg]	31	40	37	11	375	201
	Zn [mg/kg]	70	80	47	28	385	199
Albvorland		Median	Mittelwert	STABW	MIN	Max.	Anzahl
	Cd [mg/kg]	0,25	0,39	0,48	< BG	5,70	537
	Cr [mg/kg]	43	50	31	11	331	537
	Cu [mg/kg]	24	36	41	1	363	531
	Ni [mg/kg]	36	45	31	2	200	531
	Pb [mg/kg]	32	33	13	10	155	537
	Zn [mg/kg]	99	106	49	16	335	537
Oberschwaben		Median	Mittelwert	STABW	MIN	Max.	Anzahl
	Cd [mg/kg]	0,19	0,23	0,16	< BG	1,30	882
	Cr [mg/kg]	34	35	12	1	89	882
	Cu [mg/kg]	18	31	52	1	495	876
	Ni [mg/kg]	25	26	10	1	106	882
	Pb [mg/kg]	21	24		1	220	881
	Zn [mg/kg]	64	71	31	1	343	882

Hierbei wird deutlich, dass auch auf der vergleichsweise kleinen Datenbasis (24 Mischproben/Region) eine zutreffende Charakterisierung der Schwermetallgehalte in den

Bodenregionen möglich ist. Die in diesem Vorhaben gemessenen Konzentration liegen in der gleichen Größenordung, häufig geringfügig unter den für die Gebiete von Waldmann (2006) ermittelten Gesamtgehalte ackerbaulich genutzter Böden (s. Tab. 3-3): Die Datenbasis bilden Bodendaten verschiedener staatlicher Stellen aus einem Zeitraum von 1977 bis 2001 (WaBoA 2004, Waldmann 2006).

Die Zusammenschau der Korngrößenverteilungen sowie der Carbonat- und TOC-Gehalte der Oberböden zeigt, dass mit den gewählten Standorten ein breites Spektrum von Bodeneigenschaften abgedeckt werden konnte.

Die P_{ges} - sowie die Schwermetallkonzentrationen liegen für ackerbaulich genutzte Oberböden in Baden-Württemberg in einem Konzentrationsbereich, der dem in anderen Untersuchungen beschriebenen Bereich weitgehend entspricht (Waldmann 2006).

3.3 Charakterisierung der HRB-Sedimente und Hochwasserproben

Ausgehend von der Feststoffverteilung in den HRB-Sedimenten sowie in den Oberböden und Hochwasserproben werden die Stoffgehalte der HRB-Sedimente in unterschiedlichen horizontalen und vertikalen Bereichen der Stauräume am Beispiel des Phosphors aufgezeigt. Diese zusammenfassende Ergebnisdarstellung wird durch eine detaillierte Sedimentbeprobung im HRB Grombach, bei der das Sediment eines einzelnen Hochwasserereignisses beprobt wurde, ergänzt.

3.3.1 Feststoffverteilung in den Boden-, Sediment- und Hochwasserproben

In diesem Kapitel werden die Feststoffverteilungen in den Boden- Sediment- und Hochwasserproben anhand der Fraktionierungsmethode zusammenfassend dargestellt. Ein Methodenvergleich zwischen Fraktionierungsmethode und Laser-Partikelmessung der einzelnen Proben wird in Kapitel 3.7.1 angestellt. Zunächst werden die erzielten Ergebnisse vorgestellt und diskutiert. In einem zweiten Schritt wird dann auf die zentrale Bedeutung der Feststoffverteilung in den Boden-, Sediment- und Hochwasserproben eingegangen. Die Feststoffverteilung in den Proben ist ein zentraler Bestandteil dieser Arbeit und zum Prozessverständnis hinsichtlich der Stoffanreicherung bzw. -abreicherung sehr wichtig. Dies wird anhand der folgenden Punkte deutlich:

- 1. Die Feststoffverteilung korreliert direkt mit den Stoffgehalten der einzelnen Proben und somit auch mit dem ER.
- 2. Die Feststoffverteilung in den Boden-, Sediment- und Hochwasserproben gibt Aufschluss über das Sedimentations- bzw. Depositionsverhalten der unterschiedlichen Fraktionen.
- 3. Mit Hilfe der Feststoffverteilungen der Boden-, Sediment- und Hochwasserproben ist ein Prozessverständnis hinsichtlich der Stoffan- bzw. -abreicherung möglich.

Auf die Eignung der HRB als Sedimentfallen und die Bedeutung für die ER wird in Kapitel 3.7.2 ausführlich eingegangen.

In Abb. 3-2 sind die Mittelwerte und die Mediane der Feststoffverteilung der Oberboden-, der Sediment- und der Hochwasserproben dargestellt. Es zeigt sich für die Sediment- und Hochwasserproben eine Sandabreicherung im Vergleich zu den Oberböden, die besonders bei den Hochwasserproben stark ausgeprägt ist (Abb. 3-2). Damit verbunden ist in diesen Proben eine Tonanreicherung festzustellen. Die Schlufffraktion verhält sich im Gegensatz hierzu vergleichsweise indifferent. Während in den Hochwasserproben eine Anreicherung festzustellen ist, ist der Schluffgehalt in den HRB-Sedimenten im Median geringfügig niedriger als in den Oberböden. Unter Berücksichtigung der Variabilität der Einzelproben an ein und dem selben Standort sowie der methodischen Schwierigkeiten bei der Probenaufbereitung und -analyse ist jedoch festzuhalten, dass bezüglich der Schluffanteile in den Oberböden und HRB-Sedimenten mehr oder weniger gleiche Werte vorliegen.

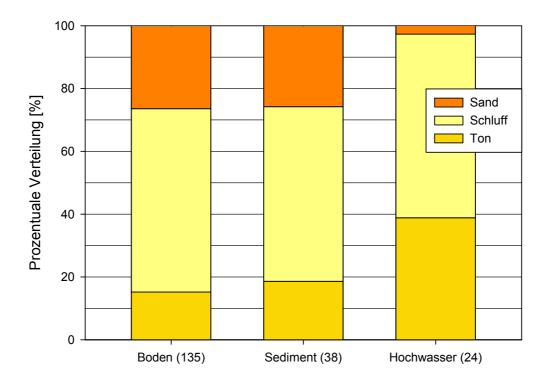


Abb. 3-2: Feststoffverteilungen in den Boden- Sediment- und Hochwasserproben (ungewichtete Mittelwerte von sämtlichen Proben)

Detailliertere Aussagen zu den während des Hochwasserereignisses stattfindenden Prozessen erlaubt die Betrachtung des Wertespektrums der Probenfraktionierung (Abb. 3-3). Hierbei zeichnen sich die Sedimentproben durch höchste Variabilität aus, die insbesondere auf zeitlich und räumlich unterschiedliche Sedimentationseffekte während des Beckeneinstaus zurückzuführen sind. Im Gegensatz hierzu zeigten die Hochwasserproben bei einem engem Wertespektrum eine klare Fraktionierung. Es ist immer eine starke Anreicherung von Schluff und Ton zu beobachten.

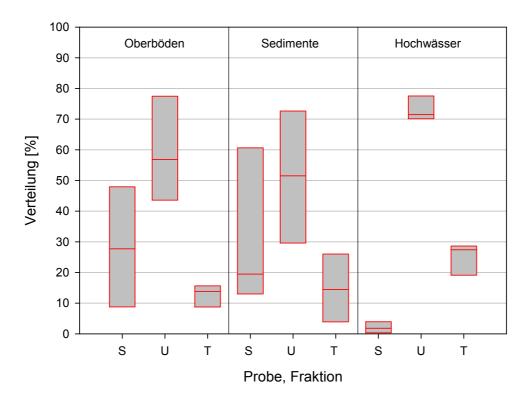


Abb. 3-3: Wertespektrum der Feststoffverteilung in den Boden-, Sediment- und Hochwasserproben (bodenregiongewichtet, Boxplots mit Medianen, 10- und 90-Perzentil)

Die räumliche Differenzierung der Feststoffverteilung in den Stauräumen lässt sich an allen 13 untersuchten HRB darstellen (Abb. 3-4). In den dammfernen Bereichen (Zulaufbereich des HRB) und in den mittleren Bereichen konnte stets deutlich mehr Sand gefunden werden als in den dammnahen Bereichen (Ablaufbereich). Dies hängt damit zusammen, das die schwereren Sandpartikel bereits im Zulaufbereich sedimentieren. Im Gegensatz dazu sind die Schluff- und Tonfraktionen in den dammnahen Bereichen deutlich größer als im Zulaufbereich der HRB. Dies hat zweierlei Gründe. Zum einen ist die Aufenthaltszeit des Hochwassers in diesen Bereichen (aufgrund der höheren Wassertiefe) länger, so dass auch feinere Partikel sedimentieren können. Zum anderen sind die dammnahen Bereiche insgesamt häufiger eingestaut als die dammfernen Bereiche. Dies ist auf kleinere Hochwasserereignisse zurückzuführen, die in der Regel feinere Partikel transportieren.

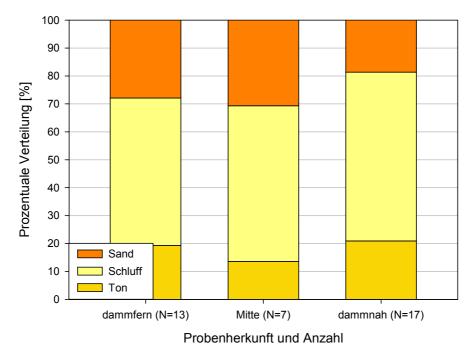


Abb. 3-4: Feststoffverteilung in den HRB-Sedimenten der untersuchten 13 HRB (ungewichtete Mittelwerte von sämtlichen Sedimentproben)

Insgesamt betrachtet kommt es durch die HRB zu einer Fraktionierung der Feststoffe und somit auch zu einer Veränderung der Stoffgehalte. Dies wird sowohl beim Vergleich zwischen den Feststoffverteilungen der Boden-, Sediment- und Hochwasserproben als auch bei der Betrachtung der Stoffgehalte der HRB-Sedimente sehr deutlich. Selbst im HRB-Stauraum findet aufgrund der Retention des Hochwassers ein Sedimentations- und somit einhergehend auch ein Fraktionierungsprozess der im Hochwasser befindlichen Feststoffe statt. In Kapitel 3.8.2 werden die sich daraus ergebenden Vor- und Nachteile der HRB als Sedimentfänger zusammenfassend dargestellt und diskutiert.

3.3.2 P_{ges}-Konzentrationen in den Stauraumsedimenten aller untersuchter HRB

In Tab. 3-4 sind die gemittelten Analysedaten der Oberbodenproben den Ergebnissen der Sedimentbeprobungen gegenübergestellt. Betrachtet man die Verteilung der P_{ges} -Konzentrationen in den Sedimenten der HRB-Stauräume, so sind horizontale und vertikale Gradienten erkennbar. Die P_{ges} -Konzentrationen nehmen von der dammnahen Probenahmestelle zur dammfernen Probenahmestelle hin ab. Dies ist auf die unterschiedliche Kornzusammensetzung der Sedimente zurückzuführen und bestätigt die enge Kopplung der feinen Fraktion (T) mit der P-Beladung der Partikel. Außerdem ist eine Abnahme der P_{ges} -Konzentrationen mit zunehmender Tiefe feststellbar.

Tab. 3-4: P_{ges}-Konzentrationen in den Ackeroberböden und den Sedimenten der HRB-Stauräume (alle Standorte)

	Oberböden		Sedimente						
P _{ges} [mg/kg]		Horizo	ntale Ver	teilung	Vert	ikale Verteil	ung		
		dammnah	Mitte	dammfern	0-20 cm	20-40 cm	> 40 cm		
Mittelwert	1.235	1.149	1.187	1.046	1.201	1.092	1.074		
Median	1.251	1.093	976	880	1.156	1.009	936		
Min	310	603	590	511	789	511	515		
Max	2.479	2.168	2.703	2.248	2.111	2.248	2.703		
Anzahl	131	45	24	32	33	30	30		

Für die Gesamtheit der Messwerte gilt, dass trotz weit auseinander liegender Minimal- und Maximalkonzentrationen ein enges Wertespektrum vorliegt. Die gewählte Vorgehensweise und die Anzahl der Proben sind damit grundsätzlich geeignet, um repräsentative Ergebnisse für die einzelnen Bodenregionen zu gewinnen.

3.3.3 P_{ges}-Konzentrationen in den Stauraumsedimenten des HRB Grombach

Im HRB Langengraben, Gronmbach wurde nach dem Beckeneinstau die Sedimentschicht im Stauraum des HRB beprobt. Dazu wurden an verschiedenen Stellen des HRB Proben entnommen. In Abb. 3-5 ist die Tiefpunktbeprobung dargestellt, die mehrere Zentimeter dicken Sedimentschichten sind gut zu erkennen.

Abb. 3-5: Sedimentschichtbeprobung im Stauraum des HRB Grombach, bei dem die Sedimentschicht eines einzelnen Hochwasserereignisses beprobt werden konnte

Die Sedimentschichtdicke im Stauraum variierte von wenigen Millimetern im Zulaufbereich und bis zu 2,5 cm in der Nähe des Dammes. An einigen Stellen (alle in bachnähe im Ablaufbereich) war die Sedimentschicht bis zu 8,0 cm stark. Eine ähnliche Verteilung von Stauraumsedimenten wurde von einem Trockenbecken in der Nähe von Freiburg i. Br. berichtet (ATV-DVWK 2001). In den mächtigeren Sedimentschichten war eine Schichtung erkennbar, die sich bei einem Einstauereignis einstellte und nicht das Ergebnis von mehreren Ereignissen war.

Die höchsten Phosphorkonzentrationen wurden im Ablaufbereich, also in der Nähe des Dammes und des Abflussgerinnes gefunden (Abb. 3-6). Die höheren Phosphorkonzentrationen sind auf höhere Tongehalte der Proben zurückzuführen. Die im Vergleich zum Zulaufbereich höhere Sedimentschicht und der höhere Tonanteil im Ablaufbereich des Stauraumes wird durch die längere Sedimentationszeit bzw. Sedimentationsstrecke verursacht. Eine ähnliche Verteilung der Korngrößen konnte auch von Marsalek & Marsalek (1997) in einem HRB im Dauerstau gefunden werden.

Die horizontale Verteilung der P_{ges} -Konzentrationen, die von einem einzigen Hochwasserereignis am HRB Grombach stammen, stimmen mit den Ergebnissen der anderen HRB-Untersuchungen, die aus zahlreichen Hochwasserereignissen resultieren, sehr gut überein.

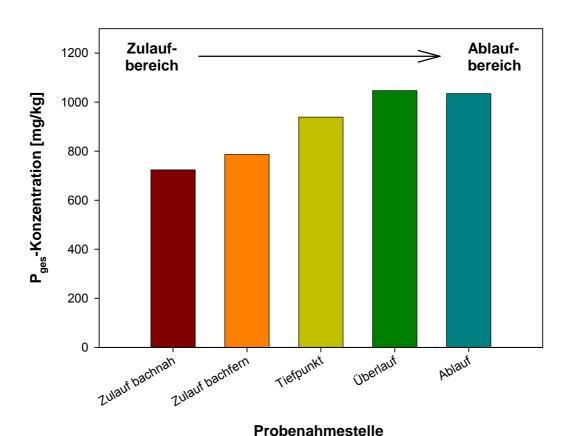


Abb. 3-6: P_{ges}-Konzentrationen in unterschiedlichen Stauraumbereichen des HRB-Grombach

3.4 ER anhand der Sedimentproben

Zunächst werden in diesem Kapitel die ER anhand der HRB-Sedimente besprochen, da dies die Ausgangssituation für das Forschungsvorhaben darstellt. Im Anschluss daran wird in einem eigenen Kapitel auf die ER anhand der Hochwasserproben eingegangen. Dieser Aufspaltung, die eine differenzierte Betrachtungsweise der unterschiedlichen ER ermöglicht, folgt dann eine Beurteilung, die für eine Bereitstellung von realistischen ER erforderlich ist.

3.4.1 Übersichtdarstellung der ER anhand der HRB-Sedimente

In Abb. 3-7 sind ER von Phosphor und den 6 Schwermetallen zusammenfassend dargestellt. Es handelt sich dabei um die ungewichtete Darstellung der ER von allen 13 Standorten. Sämtliche ER liegen in einem engen Bereich zwischen 0,5 und 2,5. Noch deutlicher wird der enge Wertebereich bei der Betrachtung der Mediane, die allesamt zwischen 0,96 (Pb) und 1,37 (Cr, Zn) liegen. Mit Ausnahme von Pb, bei dem eine rechnerische Abreicherung stattfand, konnte bei allen anderen Elementen eine leichte Anreicherung in den HRB-Sedimenten im Vergleich zu den Oberböden festgestellt werden. Die Mediane sämtlicher ERs liegen zwischen 1,0 und 1,5. Außerdem sind mit Ausnahme von Pb alle anderen Schwermetall-ER leicht über denen von Phosphor.

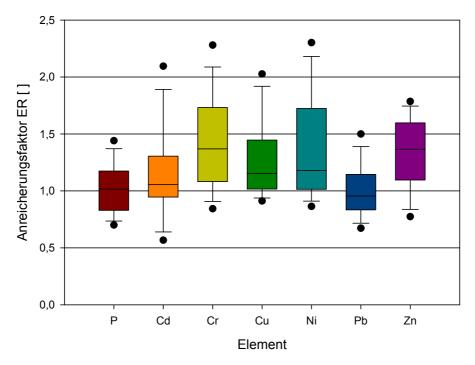


Abb. 3-7: ER für Phosphor und 6 Schwermetalle in den HRB-Sedimenten (alle Standorte, ungewichtet; Median, 25/75 Perzentil, 10/90 Perzentil, Ausreißer)

3.4.2 Standort- und bodenregiongewichtete Darstellung der ER anhand der HRB-Sedimente

In Tab. 3-5 sind die Anreicherungsfaktoren für P_{ges} und sechs Schwermetalle für die untersuchten Bodenregionen dargestellt. Sowohl bei P_{ges} als auch bei den Schwermetallen

liegen die Anreicherungsfaktoren im HRB-Sediment um den Wert 1,0. Die Werte schwanken bei P_{ges} zwischen 0,81 (Oberschwaben) und 1,08 (Kraichgau). Bei den Schwermetallen liegen die Werte zwischen 0,80 für Pb im Albvorland und 1,97 bei Cr im Albvorland.

Tab. 3-5: Anreicherungsfaktoren für P_{ges} und sechs Schwermetalle für die untersuchten Bodenregionen

Medianwerte für jede Bodenregion (standortgewichtet) und für alle untersuchten Bodenregionen (bodenregiongewichtet)

	ER _(Pges)	ER _(Cu)	ER _(Cd)	ER _(Ni)	ER _(Pb)	ER _(Zn)	ER _(Cr)
Kraichgau	1,08	1,25	0,90	1,26	1,08	1,34	1,30
Hohenlohe	1,02	1,24	1,08	1,22	0,83	1,46	1,55
Albvorland	0,90	1,79	0,97	1,71	0,80	1,26	1,97
Oberschwaben	0,81	1,16	1,23	1,34	1,27	0,91	1,09
Baden- Württemberg	0,91	1,38	1,00	1,27	0,94	1,27	1,42

Die ER für P_{ges} liegen bei den beiden Bodenregionen im nördlichen Baden-Württemberg leicht über eins, bei den beiden Bodenregionen im südlichen Baden-Württemberg leicht unter eins. Im Vergleich zu den Oberböden ist in den HRB-Sedimenten insgesamt betrachtet nur eine sehr geringe Anreicherung von P_{ges} und sogar eine leichte Abreicherung bei Pb festzustellen. Diese sehr schwache Anreicherung steht in guter Übereinstimmung mit den Feststoffverteilungen zwischen den Sedimenten und den Oberböden.

Die Minimal- und Maximalwerte an den einzelnen Standorten können dem Anhang J und K im Detail und im Überblick der Abb. 3-7 entnommen werden. Danach lag der ER_{Cd} am Standort Haigerloch bei lediglich 0,57 und der höchste Wert für ER_{Ni} lag bei 2,30 am Standort Gunningen.

Die besonders niedrigen ER korrelieren mit den vergleichsweise groben HRB-Sedimenten in den Stauräumen. Dies zeigt sich besonders an der zusätzlichen Beprobung und Auswertung der Stauraumsedimente der beiden zusätzlich untersuchten HRB bei Spaichingen ("HRB Staufelberg"). Dort waren die HRB-Sedimente aufgrund des wenige Kubikmeter großen Stauraumes sehr grobkörnig und die Stoffkonzentrationen gering (Anhang J und K).

Die Ergebnisse anhand der HRB-Sedimente können folgendermaßen zusammengefasst werden:

Insgesamt lagen die Werte bei den standortgewichteten $ER_{P, SM}$ anhand der HRB-Sedimente zwischen einer leichten Abreicherung bis zu einer leichten Anreicherung. Die Medianwerte von $ER_{P, SM}$ waren mit Ausnahme von ER_{Pb} in einem engen Bereich zwischen 1,0 und 1,5. Die Unterschiede zwischen den einzelnen Bodenregionen waren gering. Das Albvorland hatte insgesamt vergleichsweise hohe ER für Cr, Cu und Ni, Oberschwaben lag bei ER_{Cd} und ER_{Pb} im oberen Bereich. Im Kraichgau waren die ER im Vergleich zu den anderen Bodenregionen alle verhältnismäßig niedrig.

3.5 ER anhand der Hochwasserproben

Neben den ER anhand der Sedimente (Kapitel 3.4) konnten zusätzlich ER anhand von Hochwasserproben ermittelt werden, die in diesem Kapitel im Vergleich dargestellt werden. Die Angaben zu den einzelnen Hochwasserbeprobungen, Details zur Probenahme, Abflussganglinien und Fotos der verschiedenen eingestauten HRB sind dem Anhang E und G zu entnehmen. Auf die standortspezifischen Ursachen der sich aus diesem Kapitel ergebenden Ergebnisse wird im nächsten Kapitel eingegangen.

In Abb. 3-8 sind die ER_P aus den Hochwasserproben dem ER_P aus den Sedimentproben gegenübergestellt. Aufgrund der Bergung der Hochwassersedimente, die im Methodenkapitel 2.2.3 erläutert wurde, ist zwischen zwei unterschiedlichen Hochwasserfraktionen zu unterscheiden:

1. Partikuläre Hochwasserprobe (HW > 0,45 μm):

Sämtliche Feststoffe mit einer Partikelgröße > 0,45 µm.

2. Homogenisierte Hochwasserprobe (HW gesamt):

Gesamte Hochwasserprobe bestehend aus dem Hochwassersediment und dem Hochwasserüberstand (enthält neben der Fraktion > 0,45 µm auch die Fraktion < 0,45 µm, in der sich die kolloidalen und gelösten P-Komponenten befinden).

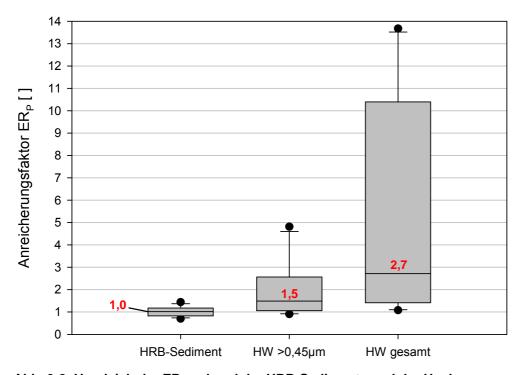


Abb. 3-8: Vergleich der ER_P anhand der HRB-Sedimente und der Hochwasserproben (HW) (alle Standorte, ungewichtet; Median, 25/75 Perzentil, 10/90 Perzentil, Ausreißer).

Bei der Betrachtung der Mediane fällt auf, dass der Unterschied zwischen den ER anhand der Sedimente und anhand der partikulären Hochwasserproben nicht sehr groß ist. Der Medianwert bei den homogenisierten Hochwasserproben ist mit 2,7 bereits höher, wobei bei den homogenisierten Hochwasserproben besonders auffällt, dass es einige extreme

Ausreißer nach oben gibt, der höchste Wert liegt bei 13,7. Die Werte, die zu den überdurchschnittlich hohen ER führten, sind auf 4 Standorte zurückzuführen. Auf die standortspezifischen Eigenheiten, die zu diesen hohen ER führten, wird im nächsten Kapitel ausführlich eingegangen.

Im Weiteren wird am Beispiel von P_{ges} die Ursache für die hohen ER aufgezeigt, wobei die Phänomene prinzipiell auch auf Schwermetalle übertragen werden können, je nach Bindungsform, Anreicherungsverhalten und Stoffkonzentration des jeweiligen Schwermetalls.

In Abb. 3-9 sind hierzu zunächst die P_{ges} -Konzentrationen von allen Boden-, Sediment- und Hochwasserproben bodenregiongewichtet dargestellt. Zusätzlich zu den oben bereits näher definierten Fraktionen ist in der Abb. 3-9 noch die Tonfraktion der HRB- und Hochwassersedimente dargestellt. Trotz des engen Wertebereiches der Massenanteile der Tonfraktion der Hochwasserproben ergibt sich bei den P_{ges} -Werten eine sehr starke Aufspreizung, die über die partikuläre Hochwasserprobe bis zu den homogenisierten Hochwasserproben exorbitant zunimmt.



Abb. 3-9: P_{ges} -Konzentrationen in unterschiedlichen Fraktionen und in den Gesamtproben der Boden-, Sediment- und Hochwasserproben (bodenregiongewichtet, Boxplots mit Median, 10- und 90-Perzentil)

Der Vergleich zwischen der Tonfraktion des Hochwassersediments und der homogenisierten Hochwasserprobe (HW gesamt) zeigt, dass die Hochwasserproben Fraktionen mit einer extrem hohen Stoffbeladung enthalten können. Auch in der Hochwasserprobe > 0,45 μ m verursachen diese Fraktionen höhere P-Konzentrationen als in der reinen Tonfraktion, obwohl diese Teilprobe auch die Schlufffraktion mit verhältnismäßig geringen P_{ges} —Gehalten enthält. Bei diesen Fraktionen handelt es sich um feinste Partikel und Kolloide, die standortabhängig im Hochwasserabfluss zu finden sind. Auf diese Bestandteile wird im

nächsten Kapitel unter Einbeziehung der standörtlichen Einzugsgebietseigenschaften näher eingegangen.

In der Abschlussphase dieses Forschungsvorhabens konnten insgesamt noch 6 Hochwässer an 2 Standorten beprobt werden: Am HRB Babstadt (1 Herbst- und 2 Frühjahrshochwässer) und am HRB Neuenstein (3 Frühjahrshochwässer). An beiden Standorten lagen die anhand dieser Hochwasserproben errechneten ER_P leicht unter den oben beschriebenen und im Anhang aufgeführten Werten. Die Einbeziehung dieser Hochwasserproben bestätigt die anhand des ersten Datenkollektives erzielten Ergebnisse.

Es wurde gezeigt, dass die in einigen Hochwasserproben hohen P-Konzentrationen auf die kolloidale Fraktion zurückzuführen ist und für die zum Teil sehr hohen ER verantwortlich sind. Für das Gesamtverständnis sind die durchgeführten Hochwasserbeprobungen, insbesondere im südlichen Baden-Württemberg, von herausragender Bedeutung.

3.6 Standortspezifische Einflüsse auf den ER

In diesem Kapitel werden die Ursachen für die hohen ER_P, die im vorigen Kapitel aufgezeigt wurden, erörtert.

In Tab. 3-6 sind exemplarisch Standorte mit niedrigen und hohen ER_P gegenübergestellt. Die Tab. 3-6 zeigt, dass die auf Basis der partikulären Phase der Hochwasserprobe (HW > 0,45 µm) berechneten ER_P an allen Standorten geringer sind als die aus der homogenisierten Hochwasserproben abgeleiteten. Besonders deutlich ausgeprägt ist dies an drei der im südlichen Baden-Württemberg liegenden Standorte. Hier konnten sehr hohe ER_P berechnet werden (Haigerloch, Fleischwangen, Mittelurbach).

Zwei Standorte befinden sich in der Bodenregion Oberschwaben und der Standort Haigerloch im Albvorland. Die an diesen Standorten gemessenen abfiltrierbaren Stoffe (AFS) der Überstände waren sehr gering und die Glühverluste (GV) waren, sofern AFS enthalten waren (siehe Tab. 3-6), sehr hoch. Dies lässt darauf schließen, dass der Phosphor im Überstand der Hochwasserproben zum überwiegenden Teil in organischer Form kolloidal vorlag.

Tab. 3-6: Unterschiede in den ER_P, AFS-Gehalten und GV in ausgewählten Überständen der Hochwasserproben von den nördlichen und südlichen Untersuchungsstandorten

Standort, Bodenregion	$ER_{P}(HW > 0.45 \mu m)$	ER _P (HW gesamt)	AFS [mg/l]	GV [%]
Grombach, Kraichgau	1,15	1,26	87	12
Seidelklingen, Hohenlohe	1,07	2,60	164	8
Haigerloch, Albvorland	4,82	12,15	7	24
Fleischwangen, Oberschwaben	1,89	13,67	0	0
Mittelurbach, Oberschwaben	2,62	9,81	2	71

Die beiden oberschwäbischen Standorte zeichnen sich durch Moorgebiete aus, die in den Einzugsgebieten liegen³. Am Standort Haigerloch ist der Grünland- und Waldanteil höher als in den Einzugsgebieten an den Standorten im Kraichgau und der Hohenlohe.

Es ist insbesondere bei den oberschwäbischen Standorten Fleischwangen und Mittelurbach davon auszugehen, dass Ausschwemmungen von feinsten Fraktionen (<< 0,45 μ m) zu den extremen Differenzen bezüglich der P_{ges}-Konzentrationen zwischen der Hochwasserprobe HW gesamt und der Hochwasserprobe HW > 0,45 μ m geführt haben (siehe Tab. 3-7).

Tab. 3-7: P_{ges}-Konzentrationen und Anreicherungsfaktoren verschiedener Proben und Probenfraktionen am Standort Fleischwangen (Oberschwaben)

Konzentrationen [mg/kg]	Median	Mittelwert	Anzahl
Boden	1.219	1.385	11
Sediment	1.019	1.019	2
Sediment-Ton	1.653	1.653	2
HW-Sediment-Ton	3.052	3.052	1
HW partikulär (> 0,45 µm)	2.306	2.306	1
HW gesamt	16.668	16.668	1
Anreicherungsfaktoren []	Median	Mittelwert	Anzahl
ER(Sediment)	0,84	0,74	-
ER(Sediment Ton)	1,36	1,19	-
ER(HW-Sediment-Ton)	2,50	2,20	-
ER(HW > 0,45 μm)	1,89	1,66	_
ER(HW gesamt)	13,7	12,0	-

Die starke P-Auswaschung aus den Mooren erklärt die Situation an den beiden oberschwäbischen Standorten sehr gut. Dort waren die Hochwässer vergleichsweise klar und wiesen durch Huminstoffe eine leicht bräunliche Färbung auf (Abb. 3-10). Dagegen waren die Hochwässer in den nördlichen Bodenregionen Kraichgau und Hohenlohe insgesamt sehr trübe und mineralisch-braun-trüb gefärbt (Anhang B). Am Standort Haigerloch hatte der hohe Grünland- und Waldanteil ähnliche Auswirkungen wie die Moore. Auswaschungen sehr hoher Frachten an gelösten organischen Verbindungen aus Waldgebieten sind beispielsweise im Dürreychgebiet im Nordschwarzwald nachgewiesen worden (Volkmann 2002). Es ist weiterhin bekannt, dass der Phosphoranteil in Huminstoffen besonders hoch ist, obwohl die einzelnen Bindungsformen des Phosphors noch nicht vollständig aufgeklärt sind (Scheffer & Schachtschabel, 1998).

_

³ In Fleischwangen wurde bei einer Tiefenlinienbeprobung ein TOC-Gehalt von 23,9 % festgestellt; ansonsten waren die Werte der beprobten Ackerflächen nicht überdurchschnittlich hoch.

Abb. 3-10: Eingestaute HRB

Oben: Eingestaute HRB in der Hohenlohe mit mineralisch-braun-trüber Hochwasserfarbe (links: HRB Neuenstein, rechts HRB-Ablauf Seidelklingen)

Unten: Eingestaute HRB in Oberschwaben mit deutlich durchsichtiger und leicht huminstoffbräunlicher Hochwasserfarbe (links: HRB Fleischwangen, rechts: HRB Mittelurbach)

Zusammenfassend lässt sich aus diesen Ergebnissen schlussfolgern, dass insgesamt nur sehr niedrige Anreicherungsfaktoren bei den Freilanduntersuchungen festgestellt werden konnten. Bezüglich der P-Anreicherung stimmt dies mit Freilanduntersuchungen von Wilke & Schaub (1996) weitgehend überein, die für das nördliche Alpenvorland einen mittleren, mittels P_{CAL} -Messungen ermittelten, ER_P von 1,86 angeben. Eine bemerkenswerte Ausnahme stellen die eben beschriebenen Betrachtungen der Hochwasserproben (gesamt) dar.

Behrendt et al. (1999) zeigen bei der Datengrundlage für das Enrichment-Ratio-Modell insgesamt drei ER_P, die mit Werten > 10 auffallen. Betrachtet man die dazugehörigen Einzugsgebiete, so zeigt sich, dass in allen diesen Einzugsgebieten ebenfalls Moorflächen vorhanden sind.

Es ist davon auszugehen, dass die kolloidale Fraktion, die bei den Hochwasserproben (gesamt) im Rahmen dieser Untersuchungen zu den ER-Extremwerten geführt hat, auch in den Proben von Behrendt et al. (1999) enthalten waren und die von Behrendt et al. (1999) errechneten Werte von der P-Auswaschung aus den Mooren überlagert wurden. Dies führt zu deutlich erhöhten Konzentrationen in den Hochwasserproben, die rechnerisch zu extrem hohen Anreicherungsfaktoren führen, aber nicht in ursächlichem Zusammenhang mit der Bodenerosion stehen.

Die an einigen Standorten festgestellten hohen ER_P können auf kolloidale Huminstoffauswaschungen zurückgeführt werden. Die Ursache dafür liegt in den Einzugsgebieten der jeweiligen Standorte, die sich durch Moorgebiete, hohe Grünland- oder Waldanteile von den anderen Einzugsgebieten der Standorte mit deutlich geringeren ER_P unterscheiden. Die Ursache für zwei hohe ER_P am HRB-Standort Babstadt konnte nicht vollständig aufgeklärt werden, möglicherweise sind Ernterückstände o. ä. dafür verantwortlich zu machen. Die parallel am HRB Mühlbach am Ortseingang von Bad Rappenau entnommenen Hochwasserproben zeigten keine erhöhten ER_P.

3.7 Methodendiskussion und Beurteilung der ER

3.7.1 Methodendiskussion

In diesem Projekt wurden sämtliche Proben mit der eigens dafür entwickelten Methode in die Sand-, Schluff- und Tonfraktion aufgetrennt und wie die Gesamtproben analysiert. Zudem wurden die Proben mit Hilfe der Laser-Partikelmessung analysiert. Da die Laser-Partikelmessung die Proben nicht fraktioniert, so dass sie anschließend analysiert werden könnten, kommt sie als Alternative zur Dekantiermethode nicht in Betracht.

In Abb. 3-11 sind die Ergebnisse der beiden Methoden anhand der Oberbodenproben dargestellt. Die Ergebnisse der Sediment- und Hochwasserproben sind im Anhang E zusammengefasst.

Beim direkten Vergleich zwischen den beiden Methoden fallen zunächst die unterschiedlichen Sandanteile in den einzelnen Proben auf. Die niedrigen oder fehlenden Standanteile bei der Laser-Partikelmessung sind darauf zurückzuführen, dass diese Fraktion aufgrund von Sedimentationseffekten in den Pumpenschläuchen des Messgerätes nicht quantitativ erfasst wurde.

Bei der Tonfraktion stimmen die Ergebnisse bei Betrachtung der Bodenproben (Abb. 3-11) und bei Betrachtung der Sedimentproben (Anhang H und I) recht gut überein. Hingegen zeigen die Hochwassersedimente deutliche Unterschiede bei der Tonfraktion (Anhang H und I). Mit der Laser-Partikelmessung wurden geringere Tongehalte ermittelt, als mit der Dekantiermethode. Dies ist wahrscheinlich auf die Quellung der Tonpartikel in den Hochwasserproben zurück zu führen. Diese waren - im Gegensatz zu den Boden- und Sedimentproben - methodisch bedingt nicht getrocknet. Durch die Quellung waren die Tonpartikel größer und wiesen eine geringere Dichte auf. Infolgedessen wurden bei der Laser-Partikelmessung die vergrößerten Tonpartikel als Schluff erfasst. Die Quellung hat hingegen keinen Einfluss auf das Ergebnis der mit der Dekantiermethode durchgeführten Fraktionierung. Allerdings waren für diese Proben aufgrund der geringeren Dichte der Partikel auffällig mehr Dekantierschritte notwendig, um die Tonfraktion abzutrennen.

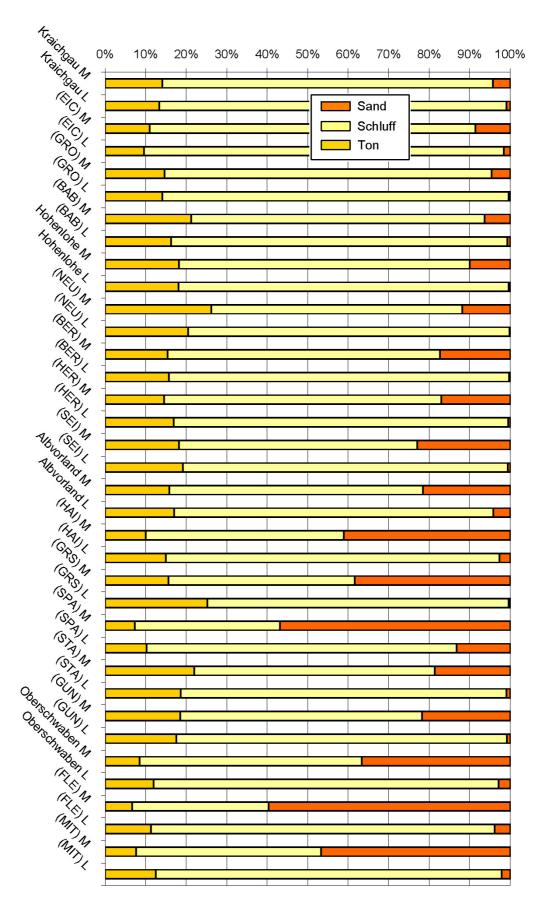


Abb. 3-11: Methodenvergleich zwischen der Dekantiermethode (M) und der Laser-Partikelmessung (L) bei den Oberbodenproben

Da die Sandfraktion mit dem Laser-Partikelmessgerät nicht vollständig erfasst werden kann, sind die Ergebnisse der Korngrößenverteilungen nach der Dekantiermethode als zutreffend zu betrachten. Bei der Dekantiermethode ist insbesondere bei der Abtrennung der Tonfraktionen darauf zu achten, dass kein Feinschluff aus der Schlufffraktion mit in die Tonfraktion verschleppt wird. Auch bei der Laser-Partikelmessmethode gibt es bei der Ton-Bestimmung das Problem, dass unklar ist, in wie weit die Tonanteile < 0,3 µm quantitativ erfasst werden, da dort die gerätetechnisch bedingte Bestimmungsgrenze liegt. Schlussendlich zeigt der Vergleich der beiden Methoden, dass die eigens entwickelte Dekantiermethode zur Probenfraktionierung eine überaus geeignete Methode darstellt, um sowohl die Korngrößenzusammensetzung als auch Stoffkonzentrationen in den unterschiedlichen Fraktionen zu bestimmen. Neben diesen Vorteilen ist als Nachteil der eingesetzten Dekantiermethode der hohe Arbeits- und Zeitaufwand zu nennen.

3.7.2 Beurteilung der Versuchsergebnisse

In den vorangegangenen Kapiteln wurden die Ergebnisse bezüglich der ER dargestellt. Aufgrund der methodischen Probleme, die im Anschluss thematisiert werden, sollen hier Lösungsansätze aufgezeigt werden, die eine Beurteilung und Bewertung der gewonnenen Ergebnisse ermöglichen.

Aus den Untersuchungsergebnissen leiten sich die folgenden vier Fragestellungen ab, die nur in der Gesamtschau erörtert werden können und die für das Prozessverständnis von großer Bedeutung sind.

(1) Bedeutung der Fraktionierungseffekte durch die HRB

In diesem Forschungsprojekt spielen die HRB als Sedimentfänger für die aus dem Einzugsgebiet in die HRB eingetragenen Feststoffe eine zentrale Rolle bei der Bestimmung der ER. Die Vorteile der HRB als Sedimentfallen können wie folgt zusammengefasst werden:

Räumliche und zeitliche Integration des Feststoffaustrages

Die HRB-Sedimente integrieren über einen langen Betrachtungszeitraum von vielen Jahren mit verschiedenen Hochwasserereignissen. Die Sedimentproben bilden damit u.a. die Häufigkeitsverteilung von Ereignissen mit unterschiedlichem Klassierungspotenzial ab und erlauben eine realitätsnahe Bestimmung von mittleren Anreicherungsfaktoren für das jeweilige HRB-Einzugsgebiet. Demgegenüber stellen einzelne Hochwasserbeprobungen lediglich Momentaufnahmen dar, die - wie für Hochwässer besonders charakteristisch - sehr stark variieren können. Flussgebietsmodelle bestimmen jedoch den erosionsbedingten Stoffeintrag auf der Basis langjähriger Mittelwerter.

Einfache Probenahme

Die Beprobung der HRB-Sedimente ist sehr einfach durchführbar und unabhängig von einer Hochwasser-Beprobung. Aufgrund der mit den HRB verbundenen Infrastruktur (Straßen und Wege) und den bei den HRB-Betreibern vorliegenden Daten sind wichtige Informationen vergleichsweise schnell verfügbar.

> Flächendeckende Beprobung möglich

Aufgrund der zahlreichen, weit verbreiteten HRB in Baden-Württemberg eignen sich die HRB als repräsentative und vergleichbare Sedimentfänger besonders.

Der Nachteil der HRB als Sedimentfallen ist die Fraktionierung der Feststoffe im Retentionsraum. Für das gesamte Prozessverständnis sind sowohl die Hochwasserproben als auch die HRB-Sedimente von Bedeutung. Beide zusammen liefern ein integrales Abbild über die Geschehnisse im Einzugsgebiet:

Die Hochwasserproben enthalten neben den feinpartikulären Feststoffen auch die kolloidalen und gelösten Stoffe, die das Einzugsgebiet verlassen.

Die HRB-Sedimente sind für die ER-Berechnung sehr wichtig, da mit der darin enthaltenen Tonfraktion eine theoretisch maximal mögliche Anreicherung errechnet werden kann (vgl. Abb. 3-12). Diese stellt die Obergrenze für die mineralische Anreicherung dar.

(2) Berechnung des theoretisch maximal möglichen ER anhand der Tonfraktionen

Mit Hilfe der Tonfraktion aus den Boden-, Sediment- und Hochwasserproben kann eine Obergrenze für die Anreicherung angegeben werden. Dabei wird theoretisch angenommen, dass beim Erosionsprozess lediglich die Tonfraktion das Einzugsgebiet verlässt. Dies ist eine idealisierte Betrachtungsweise und stellt die theoretisch maximal mögliche Anreicherung dar. Da im Freiland immer auch Sand und Schluff transportiert werden, handelt es sich um einen Maximalwert, der deutlich über den tatsächlichen mittleren ER liegt.

In Abb. 3-12 sind exemplarisch die Gesamtphosphorkonzentrationen der Oberböden aus dem Einzugsgebiet und der Sedimentproben vom Standort Grombach dargestellt. Dabei zeigt sich für diesen Standort unter den gegebenen Bedingungen ein Anreicherungsfaktor für Phosphor von 1,03. Dieser Wert stimmt mit den Anreicherungsfaktoren von anderen Untersuchungen im Kraichgau überein (Fuchs et al. 2004; Gerlinger & Scherer 1998). Allerdings ist zu berücksichtigen, dass sowohl der Befund von Fuchs et al. (2004) als auch die in Abb. 3-12 dargestellten Ergebnisse jeweils auf Einzelereignissen beruhen, deren Intensität nicht bekannt ist. Grundsätzlich kann daher nicht ausgeschlossen werden, dass im langjährigen Mittel durch den Einfluss von Klein- und Kleinstereignissen am gegebenen Standort auch höhere ER auftreten können. Anhand der Ergebnisse der fraktionierten $P_{\rm ges}$ -Analyse aus Abb. 3-12 wird deutlich, dass bei sehr kleinen Ereignissen, deren Transportkapazität nur ausreicht, um die Tonfraktion ins Gewässer zu transportieren, ein maximaler Anreicherungsfaktor von ER $_{\rm P}$ = (1918 mg P/kg / 908 mg P/kg) = 2,1 möglich wäre.

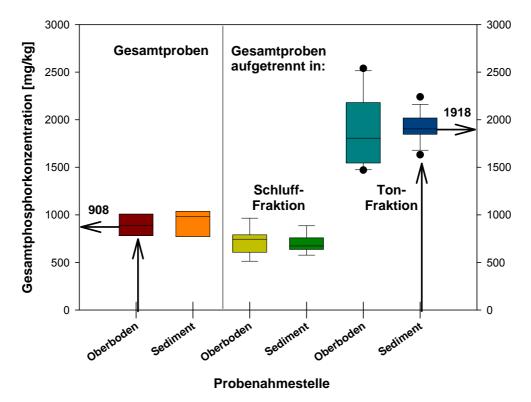


Abb. 3-12: P_{ges}-Konzentrationen im Einzugsgebiet und im Sediment des HRB Grombach Neben den Gesamtphosphorkonzentrationen sind die Konzentrationen in den Schluff- und Tonfraktionen im Oberboden und im Sediment dargestellt.

Mit Blick auf diese Messergebnisse erscheint der mit dem Modell MONERIS Deutschland für das gegebene Einzugsgebiet berechnete ER_P von 4,31 unplausibel. In der Konsequenz bedeutet dies, dass für das Einzugsgebiet auch ein bis zu 4-fach höherer Phosphoraustrag durch Erosion ermittelt wird.

In der aktuellen Modellversion MONERIS Baden-Württemberg (Ruf 2005) wird daher aufbauend auf den Befunden aus dem Kraichbach-Vorhaben (Fuchs et al. 2004) eine Begrenzung des maximal möglichen ER_P eingeführt. Der mittlere Tongehalt der Teileinzugsgebiete dient dabei als Hilfsgröße zur Festlegung des maximal möglichen ER. Es ergibt sich für das obige Einzugsgebiet ein ER_P von 1,49. Bei dieser Vorgehensweise bleibt der P-Gehalt in den Partikelfraktionen allerdings unberücksichtigt. Es wird nur das Tonanreicherungsverhältnis berechnet und nicht das eigentlich maßgebliche Stoffanreicherungsverhältnis.

Die große Bandbreite der für das gleiche Einzugsgebiet verwendeten ER_P von 1,03 bis 4,31 unterstreicht die Notwendigkeit, durch Messdaten abgesicherte und an die naturräumlichen Gegebenheiten angepasste ER auszuweisen. Für das beschriebene Einzugsgebiet wäre auf Basis der Stoffkonzentration in der Tonfraktion eine rechnerische Obergrenze des ER_P bei 2,1 zu setzen. Die weiteren Arbeiten im Hinblick auf die Modellentwicklung werden sich darauf konzentrieren, einen mittleren ER unter Berücksichtigung der Stoffgehalte (Phosphor und Schwermetalle), landschaftsspezifischen Einflussgrößen sowie verschiedener Erosionsereignisse zu bestimmen.

Tab. 3-8: Vergleich von gemessenen ER_P mit berechneten ER_P (MONERIS-Baden-Württemberg)

1	2	3	4	5
HRB-Standort	ER _{P (Sediment)}	ER _{P (Hochwasser)}	ER(max) _{P (Tonfraktion)}	ER _P (MONERIS-BW)
Grombach	1,06	1,35	2,63	1,49 (4,31)
Berndshausen	0,98	1,40	2,11	3,00 (10,42)
Neuenstein	0,96	1,11	2,12	2,96 (6,8)

^{*:} Bei den ER_P* _(MONERIS-BW)-Werten sind die bislang verwendeten Werte in Klammern dargestellt. Unter Berücksichtigung des Tongehaltes ergeben sich die vorangestellten Werte, die deutlich niedriger liegen.

Tab. 3-8 fasst den gegenwärtigen Kenntnisstand zur Bandbreite von Anreicherungsfaktoren für Phosphor am Beispiel von 3 Standorten zusammen. Neben den aus der fraktionierten P_{ges} -Analytik gewonnenen Anreicherungsfaktoren ist die maximale rechnerische Anreicherung ($ER(max)_{P \text{ (Tonfraktion)}}$) sowie der im Modell MONERIS für Baden-Württemberg berücksichtigte $ER_{P \text{ (MONERIS-BW)}}$ dargestellt. Es wird abermals deutlich, dass die anhand des theoretischen Zusammenhangs zwischen Bodenabtrag oder Sedimenteintrag berechneten Anreicherungsfaktoren (Spalte 5, Werte innerhalb der Klammern) zu einer eklatanten Überschätzung der ER führen können. Auch durch die Berücksichtigung des Tonanreicherungsverhältnisses (Spalte 5, Werte außerhalb der Klammern) wird nicht die tatsächliche Stoffanreicherung erfasst.

Die in den aufgeführten Modellgebieten tatsächlich auftretenden Anreicherungsfaktoren werden mit hoher Sicherheit im Bereich der in Spalte 2 und 3 angegebenen Werte liegen. Dabei ist anzumerken, dass die aus der Beprobung der Hochwasserereignisse resultierenden Werte (Spalte 3) eher die Obergrenze darstellen.

(3) Pges-Anteile in der Ton-, Schluff- und Sandfraktion

Wie bereits in der Einleitung aufgezeigt wurde, spielt die Tonfraktion aufgrund der großen Adsorptionsfläche eine wichtige Rolle bei der Stoffanreicherung. Bei der Sandfraktion handelt es sich um eine vergleichsweise heterogene Fraktion, da neben den mineralischen Bestandteilen auch eine nicht unerhebliche Menge an organischen "Beimengungen" enthalten sein kann.

In diesem Abschnitt soll deshalb der Frage nachgegangen werden, wie sich die P_{ges} -Gesamtgehalte auf die einzelnen Fraktionen verteilen und welche Relevanz diese bei der Anreicherung haben. In Tab. 3-9 sind Werte von Oberbodenkollektiven aus den Bodenregionen Kraichgau, Hohenlohe und Albvorland dargestellt. Die P_{ges} -Masse in der Sandfraktion wurde durch Subtraktion der P-Gehalte der T- und U-Fraktion von der Gesamtprobe errechnet.

Tab. 3-9: Prozentuale Verteilung der P_{ges}-Mengen auf die Ton-, Schluff- und Sandfraktion

	P-Anteil in T	P-Anteil in U	P-Anteil in S
Kraichgau	30%	53%	17%
Hohenlohe	32%	34%	35%
Albvorland	12%	33%	55%

Im Kraichgau entspricht die Phosphorverteilung nahezu vollständig der Korngrößenverteilung. Im Gegensatz hierzu finden sich in den Oberböden des Albvorlandes im Mittel 55 % des Phosphors in der Sandfraktion, obwohl diese nur einen Oberbodenanteil von etwa 15 Massenprozent hat. Ursächlich ist, dass hier die "Sandfraktion" beträchtliche Mengen an organischen Bestandteilen (Abb. 3-13) aufweist. Dabei handelt es sich in erster Linie um Ernterückstände und sonstige Pflanzenreste unterschiedlichen Zersetzungsgrades. Auf diesen organischen Anteil in der "Sandfraktion" ist der P_{ges}-Anteil zurückzuführen.

Abb. 3-13: "Sandfraktion" einer Oberbodenprobe Es ist deutlich zu erkennen, dass neben den mineralischen Sandpartikeln auch zerkleinertes organisches Material Bestandteil dieser "Sand"-Fraktion ist.

Das auf Erosion zurückzuführende Anreicherungsgeschehen wird vor allem von der Tonfraktion und, wenn vorhanden, von den organische Bestandteilen der Sandfraktion bestimmt. Diese werden besonders leicht erodiert und -transportiert. Der selektive Transport dieser leichteren Fraktionen konnte bei kleineren Hochwasserereignissen mehrmals beobachtet werden. Die Feststoffe solcher Ereignisse setzen sich aus der mineralischen Tonfraktion und dem ebenfalls leicht zu transportierenden organischen Anteil der "Sandfraktion" zusammen.

(4) Vergleich der P_{qes}-Konzentrationen in den Gesamtproben und den Tonfraktionen

Die P_{ges}-Konzentrationen der Tonfraktionen und der Gesamtproben sind in Tab. 3-10 aufgeführt. Zunächst fällt bei den Gesamtproben die deutlich höhere Konzentration und Schwankungsbreite bei den Hochwasserproben auf. Der Vergleich zwischen den Hochwasserproben und den Boden- und Sedimentproben deutet auf eine Stoffanreicherung aufgrund der HRB hin. Die große Schwankungsbreite tritt allerdings nur bei den Gesamt-

Hochwasserproben auf, in der Tonfraktion der Hochwassersedimente ist sie deutlich geringer.

Tab. 3-10: P_{ges} -Konzentrationen [mg/kg] in den Gesamtproben und in der Tonfraktion aller Boden-, Sediment- und Hochwasserproben (alle Proben, ungewichtet) Die P_{ges} -Konzentrationen in der Tonfraktion der Sedimente ist deutlich geringer als in den Tonfraktionen der Boden- und Hochwasserproben.

	Bodenproben		Sedimer	ntproben	Hochwasserproben		
	gesamt	Ton	gesamt	Ton	Gesamt	Ton*	
Median	1.213	2.093	1.124	1.734	1.918	2.056	
Mittelwert	1.266	2.251	1.181	1.751	3.985	2.132	
STABW	360	838	329	401	4.544	528	
Anzahl	137	135	41	41	22	22	

^{*} Tonfraktion der Hochwassersedimente

Des Weiteren fallen bei den Tonfraktionen die unterschiedlich hohen Konzentrationen auf, wobei die Werte zwischen den ungewichteten (Tab. 3-10) und bodenregionsgewichteten Proben (Anhang) sehr ähnlich sind. Bei den Tonfraktionen der Boden- und Hochwasserproben sind die Konzentrationen mit 2 093 mg/kg und 2 056 mg/kg nahezu gleich. Demgegenüber steht die Tonfraktion der Sedimentproben, die mit einer P_{ges}-Konzentration von lediglich 1 734 mg/kg deutlich unter den anderen Werten liegt. Dies steht im Einklang mit der Stoffanreicherung in den Gesamt-Hochwasserproben nach Passage der HRB. In den Stauräumen sedimentieren überwiegend die gröberen Bestandteile der Tonfraktion, die sich aufgrund ihrer Dichte besonders leicht abtrennen. Dies sind in erster Linie mineralische Partikel, wohingegen die leichteren organischen Partikel eher in Schwebe bleiben und aus dem HRB-Stauraum ausgetragen werden. Auch die Standardabweichungen deuten auf eine vergleichsweise homogene Zusammensetzung bei den HRB-Sedimenten und auf eine heterogenere Zusammensetzung der Hochwasserproben hin.

(5) Abschätzung des ER-Schwankungsbereiches durch die Einbeziehung der Minimalund Maximalwerte im Einzugsgebiet

Im Gegensatz zu der in Punkt (2) beschriebenen Vorgehensweise, bei der eine Höchstgrenze für den ER berechnet wird, erlaubt diese Methode die Angabe eines Streuungsbereiches, innerhalb dessen der mittlere ER liegen sollte. Dazu werden rechnerisch die Minimalwerte der Sedimentbeprobungen mit den Maximalwerten aus dem Einzugsgebiet verglichen, um die minimal mögliche Anreicherung bzw. Abreicherung zu berechnen. Zur Berechnung der maximalen Anreicherung wird dann entsprechend mit dem Minimalwert aus dem Einzugsgebiet gerechnet. Bei dieser Betrachtung des Werte-Schwankungsbereiches wird den Inhomogenitäten im Einzugsgebiet und in den Stauräumen Rechnung getragen. Inhomogenitäten im Einzugsgebiet können z. B. die unterschiedliche Erosionsliefergebieten, unterschiedliche unterschiedliche Gewichtung von Böden, Hintergrundgehalte o.ä. sein. Bei den Inhomogenitäten in den HRB-Stauräumen handelt es sich hauptsächlich um die Klassifizierungseffekte. Im Anhang J und K sind deshalb bei den Werten zu den ER zusätzlich die ER_{min} und die ER_{max} Werte der jeweiligen Elemente angegeben.

3.7.3 Vergleich der Ergebnisse mit anderen Untersuchungen

In diesem Kapitel werden verschiedene Untersuchungen, die sich mit der Ermittlung von ER unterschiedlicher Elemente befassen, aufgezeigt und diskutiert. Es handelt sich dabei ausschließlich um solche Forschungsarbeiten, die den ER direkt durch den Vergleich von Abflussereignissen bzw. Sedimenten mit den Oberbodenkonzentrationen berechnen. Neben Untersuchungen zu Phosphor wurden auch Untersuchungen mit Hilfe der Radionukleotide ¹³⁷Cs und ²¹⁰Pb durchgeführt und in einer Arbeit wurden Lanthanoide (Elemente aus der Gruppe der seltenen Erden) für die Ermittlung von ER herangezogen. Im Folgenden werden die Untersuchungsergebnisse in der Reihenfolge P, Schwermetalle und Lanthanoide vorgestellt, diskutiert und am Kapitelende zusammengefasst. In Tab. 3-11 sind die ER der verschiedenen Elemente aus unterschiedlichen Untersuchungen im Überblick dargestellt.

Tab. 3-11: Zusammenstellung der ER für verschiedene Elemente und Parameter aus unterschiedlichen Untersuchungen

ER-Wertebereich	ER-Extremwerte	Element	Quelle
$ER_P = 0.7 - 2.7$	-	Р	Fiener et al. (2005)
$ER_P = 1,86$	$ER_P = 0,185 - 5$	Р	Wilke & Schaub (1996)
$ER_{P} = 5.8$	-	P	Lal (1976)
$ER_P = 0.9 - 1.9$	-	Р	Auerswald & Haider
$ER_{Cu} = 1,2 - 2,7$	-	Cu	(1992)
ER _P =1,89	$ER_P = 0.62 - 3.50$	P _{CAL}	Weigand et al. (1998)
$ER_{Cs} = 1,72$	$ER_{Cs} = 0.40 - 4.95$	¹³⁷ Cs	
$ER_{Cs, Pb} = 1.0 - 1.5$	-	¹³⁷ Cs u. ²¹⁰ Pb	He & Walling (1996)
$ER_X = 1.0 - 2.3$	$ER_X = 0.4 - 2.3$	Ce, Gd, La, Nd, Pr, Sm	Kimoto et al. (2006)
$ER_{Cs} = 2.9 \text{ u. } 5.6$	ER _{Cs} = 1,8 - 10,8	¹³⁴ Cs	Bernard et al. (1992)
$ER_{Cs} = 2,0$	-	¹³⁷ Cs	Mabit et al. (1999)

ER für P

Die Untersuchung von Fiener et al. (2005) kommt dem ER-Vorhaben in der Durchführung am Nächsten. Es wurden in landwirtschaftlichen EZG in Bayern künstliche Rückhalteräume erzeugt, um den erodierten Oberboden zurückzuhalten. Im Vergleich zu der hier vorliegenden Untersuchung waren die EZG mit 1,6-7,8 ha insgesamt kleiner. In dem 8-jährigen Untersuchungszeitraum wurde ein ER $_{\rm P}$ =0,7-2,7 festgestellt. Auch bei den anderen Parametern wie $C_{\rm org}, P_{\rm CAL}, K_{\rm CAL}, N_{\rm org}$ und Ton kam es zu Anreicherungen, die im Bereich von 1,7 bis 2,7 lagen, insgesamt also vergleichsweise niedrig waren. Am niedrigsten war dabei die Anreicherung von organischem Material.

Wie in diesem Vorhaben konnten auch Fiener et al. (2005) eine geringere Anreicherung bzw. Abreicherung in den abgelagerten Sedimenten im Rückhalteraum im Vergleich zu den insgesamt erodierten Feststoffen beobachten. Diese Abreicherung betraf alle untersuchten Parameter, für P lag der ER im Durchschnitt bei $ER_P = 0.9$ in den Sedimenten der Rückhalteräume. Im erodierten Oberbodenmaterial wurde ein mittlerer ER_P von 1,7 bestimmt.

Bei der Untersuchung von Wilke & Schaub (1996) wurden 4 Untersuchungsgebiete auf der Alpennordseite der Schweiz mit EZG von 0.001 - 0.032 ha hinsichtlich des Bodenabtrags und der Stoffanreicherung untersucht. Der ER für P, der mit Ammonium-Lactat extrahiert wurde, lag zwischen 0.185 und 5. Der nach Sharpley (1980) und Auerswald (1989) formelmäßig errechnete ER_P betrug dabei maximal 7. Im Gegensatz zu Sharpley (1980) wurde von den Autoren keine Korrelation zwischen ER und dem Bodenabtrag gefunden.

Wilke & Schaub (1996) empfehlen, anstelle einer Formel besser mit einem konstanten Wert für den ER_P=1,86 zu rechnen, der 94 % aller Ereignisse erfasste. Dieser ER_P=1,86 gilt nach Angaben der Autoren auch für einen Großteil des nördlichen Alpenvorlandes.

Auerswald & Haider (1992) untersuchten die Anreicherung von P und Cu in 3 EZG mit 1,9 – 2,5 ha. Die Stoffanreicherung war bei Cu um den Faktor 1,3 höher als bei P (ER $_P$ = 0,9 - 1,9 und ER $_{Cu}$ = 1,2 - 2,7). Die Autoren berichten, dass insbesondere bei niedrigen Abtragsintensitäten Ton und organisches Material im abgetragenen Material angereichert waren, wohingegen Sand und Steine zurückblieben. So ließen sich 75 % (für P) bzw. 73 % (für Cu) der Anreicherung mit der Anreicherung organischer Substanz erklären.

Von Lal (1976) wurden in Nigeria 100 m²-Felder mit unterschiedlichen Gefällen hinsichtlich der Anreicherung untersucht. Dabei wurde auf den vergleichsweise kleinen Flächen hohe Anreicherungen mit $ER_P=5,8$ gefunden. Lal (1976) weist ausdrücklich darauf hin, dass das erodierte Sediment einen hohen organischen Anteil aufwies. Dies führte zu sehr hohen Anreicherungen für das organische Material ($ER_{Corg}=2,4$).

ER für Cs und Pb

He & Walling (1996) analysierten die Adsorption von ¹³⁷Cs und ²¹⁰Pb an unterschiedliche Kornfraktionen bzw. Partikeloberflächen. Die ER von ¹³⁷Cs und ²¹⁰Pb liegen bei den Gesamtproben zwischen 1,0 und 1,5. Mit zunehmender Partikeloberfläche bzw. kleineren Partikeldurchmessern nehmen die ER in Form einer Potenzfunktion zu. Auch hier wird festgehalten, dass der Einfluss des organischen Materials insbesondere bei den kleiner werdenden Partikeldurchmessern eine zunehmend wichtigere Rolle spielt. He & Walling (1996) berichten darüber hinaus, dass die Anreicherung bereits innerhalb ein und desselben Ereignisses variiert. Der Grund dafür ist die Änderung der Partikelgrößenverteilung während des Abflussereignisses.

Weigand et al. (1998) untersuchten die Anreicherung von P_{CAL} , ¹³⁷Cs und weiteren Parametern in 8 kleinen landwirtschaftlichen EZG (1,6-16,8 ha) anhand von 31 Abflussereignissen. Als mittlere Anreicherungen wurden für P_{CAL} 1,89 (0,62-3,50) und für ¹³⁷Cs 1,72 (0,40- 4,95) ermittelt. Dabei wurden positive Korrelationen zwischen P, Cs, C_{org} und Ton festgestellt. Aufgrund der gleichmäßigen P-Verteilung im Boden eignet sich P besser als Cs für die Berechnung und Vorhersage des ER. Das bedeutet, dass die Korrelation für P ein guter Ausgangspunkt für die Berechnung der ER für Schwermetalle darstellt, wobei der richtige Umrechnungsfaktor ermittelt werden muss.

Bernard et al. (1992) brachten ¹³⁴Cs künstlich auf 2 Parzellen (jeweils 5 m²) mit unterschiedlichen Bodentexturen auf. Die ER lagen bei 2,9 und 5,6, wobei die

Schwankungsbreite zwischen 1,8 und 10,8 lag. Die höheren ER wurden in einer Parzelle mit grobstrukturiertem Boden gefunden. Bernard et al. (1992) führen jedoch die insgesamt hohen ER auf das organische Material zurück. In einer späteren Untersuchung wurde von den Autoren mit einem ER von 2,0 gerechnet (Mabit et al. 1999).

ER für Lanthanoide

Kimoto et al. (2006) untersuchten die Anreicherung von Lanthanoiden (Ce, Gd, La, Nd, Pr, Sm) in einem 0,68 ha großen EZG in Ohio, USA. Dabei konnten Anreicherungen zwischen 0,4 – 2,3 bei der Abflussbeprobung nach Regenereignissen während des 4-jährigen Untersuchungszeitraumes festgestellt werden. Dabei lagen 73 % der ER zwischen 1,0 und 2,3. Weiterhin konnten die Autoren keinen Zusammenhang zwischen den ER und der Intensität der Regenereignisse finden. In den Sedimenten waren die ER tendenziell niedriger als in den suspendierten Proben.

Für P liegen die ER aus Tab. 3-8 unter Annahme einer groben Vereinfachung etwa bei 2, bei den Schwermetallen und Lanthanoiden ergeben sich ebenfalls ER um 2. Die Ursache für die Abreicherungen und starken Anreicherungen werden im Folgenden zusammengefasst.

Prinzipiell wurde in allen aufgezeigten Untersuchungen bei den Sedimenten Abreicherungen und im Gegensatz dazu bei den suspendierten Stoffen höhere Anreicherungen festgestellt. Zum einen lag dies an den kleineren Partikelgrößen der suspendierten Stoffe und den damit verbundenen größeren Partikeloberflächen. In den meisten Untersuchungen waren aber nicht nur die Partikelgrößen für die höheren ER verantwortlich, sondern auch der erhöhte Anteil an organischem Material in diesen Fraktionen, wobei in einigen Untersuchungen eindeutige positive Korrelationen zwischen der organischen Substanz und den hohen ER gefunden werden konnten. Die organische Substanz enthält selbst einen vergleichsweise hohen Anteil des angereicherten Stoffes und kann zusätzlich weitere Stoffe aufnehmen.

3.8 Regionalisierung und Extrapolation

Ein Ziel des Vorhabens war die Ausweisung von klar definierten Parametern, mit denen der ER vorhergesagt werden kann. Aufgrund der vergleichsweise geringen Datenbasis und der heterogenen Randbedingungen konnten keine eindeutigen Korrelationen auf Standortebene (Berücksichtigung aller Einzelwerte) festgestellt werden. Bessere Korrelationen konnten durch die Zusammenfassung der Einzelwerte zu den jeweiligen Bodenregionen gefunden werden. Dabei ergaben sich insbesondere gute Korrelationen zwischen den ER (anhand der partikulären Hochwasserproben) und den Ackerflächen im Einzugsgebiet (r² = 0,65) und zwischen dem ER (anhand der partikulären Hochwasserproben) und dem mit der Dekantiermethode ermittelten Tongehalt im Oberboden (r² = 0,62). Zwischen dem oben Parametern wie Sand, beschriebenen ER und Schluff, Bodenabtrag (nach Bodenerosionsatlas), Sedimenteintrag, C_{org} im Oberboden etc. konnten nur wesentlich schwächere Korrelationen festgestellt werden. Ursächlich für diese schwachen Korrelationen ist, dass der ER von vielen und sehr unterschiedlichen Faktoren abhängig ist, wobei den Faktoren Bodenart, Ackerflächen und C_{orq}-Gehalte in den Oberböden (pflanzliches Material) im Einzugsgebiet eine wichtige Rolle zukommt. Letztendlich sind die Korrelationen zu schwach und für eine Modellerstellung mittels multipler Regressionsanalyse nicht geeignet. Deshalb wurden die ER auf Basis einer Typisierung der untersuchten Naturräume regionalisiert. Dieses Vorgehen erscheint angemessen, da die ER in einem engen Wertespektrum liegen.

Es muss darauf hingewiesen werden, dass die Datenbasis für die Extrapolation der Untersuchungsergebnisse vergleichsweise gering ist, da die ER anhand der Hochwasserproben ermittelt werden müssen, aufgrund der bereits beschriebenen Fraktionierungseffekte durch die HRB. Eine räumliche Extrapolation und flächenhafte Darstellung der Ergebnisse für Baden-Württemberg wird dennoch vorgenommen. Eine Übertragung der Befunde auf die Fläche Deutschlands wurde im Rahmen des Vorhabens geprüft aber aufgrund der stark regionalen Datenbasis nicht weiterverfolgt.

Für die Regionalisierung der Untersuchungsergebnisse wurden folgende Kartengrundlagen verwendet:

- Bodenübersichtskarte von Baden-Württemberg (1 : 200 000) in generalisierter Form
- Naturräume von Baden-Württemberg (WaboA 2004)
- Bodenregionen von Deutschland [Ad-hoc-AG Boden (2005)]
- Bodenübersichtskarte 1000 von Deutschland in generalisierter Form
- Landnutzung anhand von Corine-Landcover (2000) in generalisierter Form

Zunächst wurden die Untersuchungsergebnisse auf die Naturräume von Baden-Württemberg übertragen. Dazu wurde die Bodenübersichtskarte 1:200.000 in generalisierter Form zur Ermittlung der vorherrschenden Bodenarten verwendet. Die Abgrenzung der einzelnen Bodenregionen erfolgte anhand der Aufteilung in die Naturräume nach dem Wasser- und Bodenatlas von Baden-Württemberg (WaboA 2004). Für die Bundesrepublik Deutschland wurde als Grundlage für die Extrapolation der Ergebnisse die Karte mit den Bodenregionen von Deutschland verwendet [Ad-hoc-AG Boden (2005)].

Anhand der Auswahlkriterien "vorherrschende Bodenarten" und "relativer Anteil der Acker-, Grünland-, Wald-, Moor- und Wasserflächen" erfolgte dann eine Zuordnung der jeweiligen Bodenregion zu einer der vier untersuchten "Bodenregionen". Die Abb. 3-14 - Abb. 3-17 zeigen die Ergebnisse für Baden-Württemberg. Die Übertragung auf Deutschland ist aufgrund der geringen Datenbasis und der zusätzlich zu berücksichtigenden "Bodenregionen" nicht dargestellt.

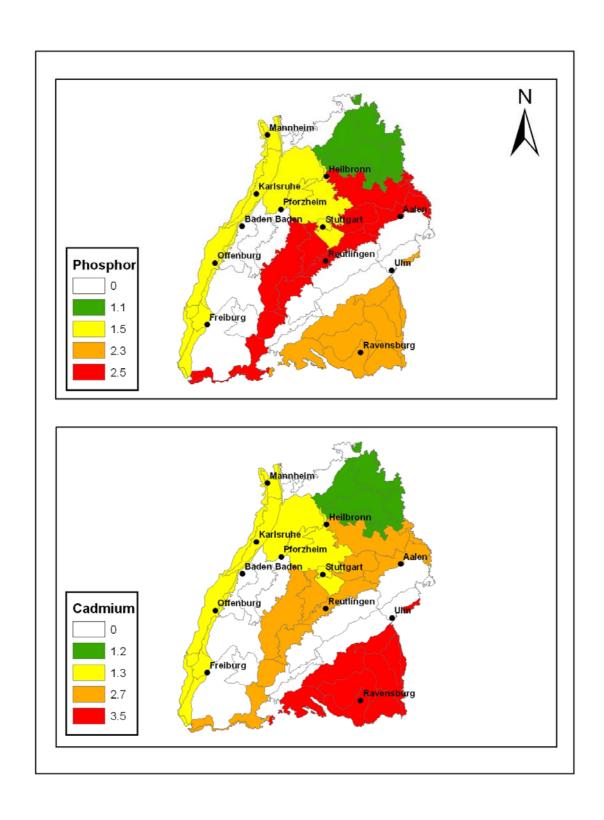


Abb. 3-14: Anreicherungsfaktoren für Phosphor und Cadmium in Baden-Württemberg

64

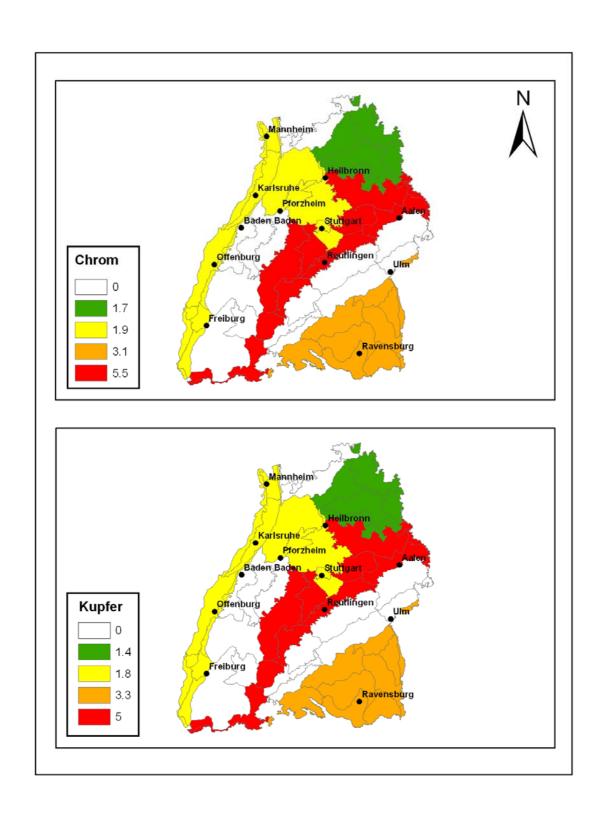


Abb. 3-15: Anreicherungsfaktoren für Chrom und Kupfer in Baden-Württemberg

65

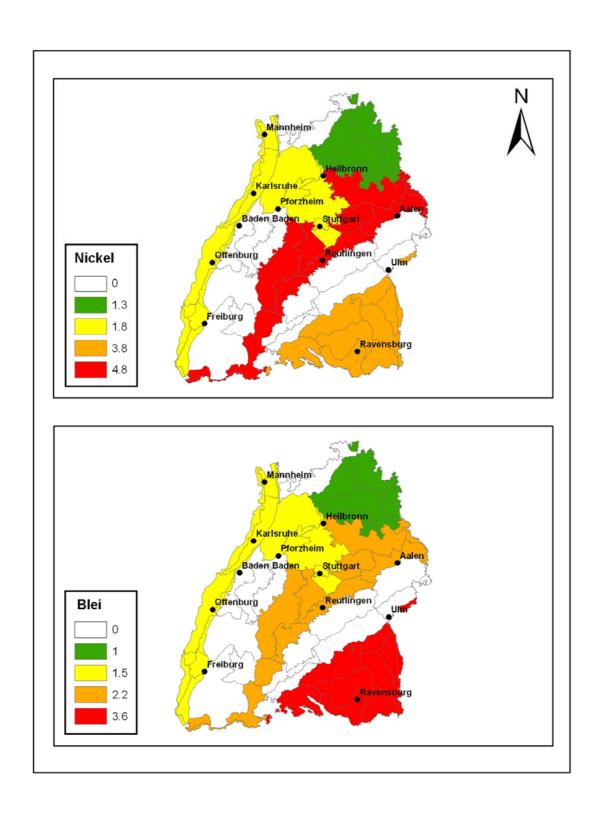


Abb. 3-16: Anreicherungsfaktoren für Nickel und Blei in Baden-Württemberg

66

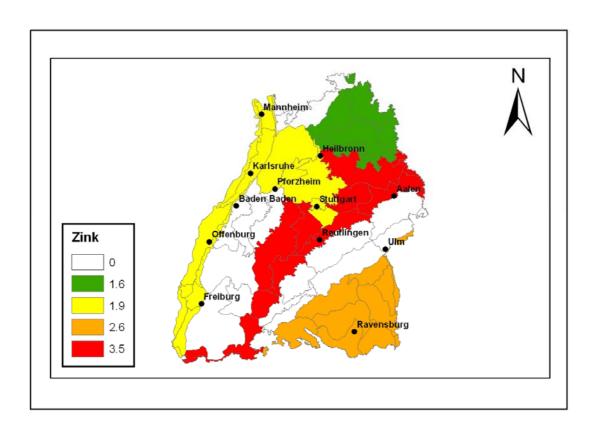


Abb. 3-17: Anreicherungsfaktoren für Zink in Baden-Württemberg

4 Literatur

- AG Boden (1982): Bodenkundliche Kartieranleitung. 3. Auflage, 331 S., Hannover.
- Ad-hoc-AG Boden (2005): Bodenkundliche Kartieranleitung, 5. Aufl., 438 S., Hannover.
- Allen, T. (1980): Particle Size Measurement (4th edition). Chapman and Hall, London.
- Atalay, A. (2001): Variation in phosphorus sorption with soil particle size. Soil and Sediment Contamination 10(3): 317-335.
- ATV-DVWK (2001): Hochwasserrückhaltebecken: Probleme und Anforderungen aus wasserwirtschaftlicher und ökologischer Sicht. ATV-DVWK-Schriftenreihe, Bd. 26, ISBN: 3-935669-18-6. Hennef.
- Auerswald, K. & Haider, H. (1992): Eintrag von Agrochemikalien in Oberflächengewässer durch Bodenerosion. Zeitschrift für Kulturtechnik und Landesentwicklung Vol. 33, S 222-229.
- Auerswald, K. (1989): Predicting nutrient enrichment from long-term average soil loss. Soil Technology, 2. S. 271 277.
- Behrendt, H., Bach, M., Kunkel, R., Opitz, D., Pagenkopf, W.-G., Scholz, G. & Wendland, F. (2003): Quantifizierung der Nährstoffeinträge der Flussgebiete Deutschlands auf der Grundlage eines harmonisierten Vorgehens. Umweltbundesamt, Forschungsbericht 29922285.
- Behrendt, H., Huber, P., Opitz, D., Schmoll, O., Scholz, G. & Uebe, R. (1999): Nährstoff-bilanzierung der Flussgebiete Deutschlands. Umweltbundesamt, Texte 75/99, Berlin.
- Bernard, C., Laverdiére, M.R. & Pesant, A.R. (1992): Variabilité de la relation entre les pertes de césium et de sol par érosion hydrique (Variability of the relationship between cesium and soil losses by water erosion). Geoderma 52. 265-277.
- Bork, H.-R. (1988): Bodenerosion und Umwelt. Verlauf, Ursachen und Folgen der mittelalterlichen und neuzeitlichen Bodenerosion. Bodenerosionsprozesse, Modelle, und Simulationen. Landschaftsgenese und Landschaftsökologie, Heft 13, Braunschweig.
- Braun, A.M. & Pionneau, P. (1999): TOC-User-Seminar im FZU. Analytikabteilung des FZU der Universität Karlsruhe.
- Busch, K.-F. & Luckner, L. (1974): Geohydraulik für Studium und Praxis. Ferdinand Enke Verlag, Stuttgart. 2. durchgesehene Auflage.
- Clemens, G. & Stahr, K. (1994): Present and past soil erosion rates in catchments of the Kraichgau area (SW-Germany). Catena 22, 153-168.
- DIN 38409 (1987): Bestimmung des Gesamttrockenrückstandes, des Filtrattrockenrückstandes und des Glührückstandes. Ref. Nr. DIN 38409 Teil 1.
- DIN 18124 (1997): Bestimmung der Korndichte. Ref. Nr. DIN 18124:1997-07.

- DIN 19700-12:2004-07 (2004): "Stauanlagen Teil 12: Hochwasserrückhaltebecken"; Normenausschuss Wasserwesen (NAW) im DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH, Berlin.
- DIN EN 13346 (2000): Characterization of sludges Determination of trace elements and phosphorus Aqua regia extraction methods. Ref. Nr. EN 13346:2000 D.
- DIN ISO 11277 (2002): Soil quality, Determination of particle size distribution in mineral soil material Method by sieving and sedimentation. Ref. Nr. DIN ISO 11277:2002-08.
- Dunger, W. & Fiedler, H.J. [Hrsg.] (1999): Methoden der Bodenbiologie. 2. Auflage. G. Fischer Verlag, Jena.
- Fiener, P., Auerswald, K. & Weigand, S. (2005): Managing erosion and water quality in agricultural watersheds by small detention ponds. Agriculture, Ecosystems & Environment 110(3-4). 132-142.
- Frede, G. & Dabbert, S. [Hrsg.] (1998): Handbuch zum Gewässerschutz in der Landwirtschaft. Ecomed Verlag, Landsberg.
- Fuchs, S. (2007): Schriftliche Mitteilung.
- Fuchs, S., Bechtel, A. & Butz, J. (2004): Stoffstromanalysen für kleinere und mittlere Flussgebiete als Grundlage für die Planung und Umsetzung von Gewässerschutzmaßnahmen. Abschlussbericht BWPLUS Vorhabensnummer BWC 21003.
- Fuchs, S., Scherer, U., Hillenbrand, T., Marscheider-Weidemann, F., Behrendt, H. & Opitz, D. (2002): Quantifizierung der Schwermetalleinträge aus Deutschland zur Umsetzung der Beschlüsse der Internationalen Nordseeschutzkonferenz. Umweltbundesamt, Texte 54/02, Berlin.
- Gerlinger, K. & Scherer, U. (1999): Simulating soil erosion and phosphorus transport on loess soils using advanced hydrological and erosional models. In: Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes (ed. By W. Summer, E. Klaghofer & W. Zhang). Proceedings of a symposium held at Vienna, July 1998, 119-127. IAHS Publ. 249; IAHS Press, Wallingford, UK.
- Giesecke, J. (2000): Dams and flood control-systems of detention reservoirs in southwestern Germany. Q. 77 –R.8. 79-96. German dam research and technology. http://www.talsperrenkomitee.de/german_research/data/giesecke_peking/giesecke_peking.pdf.
- Gündra, H., Jäger, S., Schröder, M. & Dikau, R. (1995): Bodenerosionsatlas Baden-Württemberg. Verlag Eugen Ulmer. Stuttgart.
- He, Q. & Walling D.E. (1996): Interpreting particle size effects in the adsorption of ¹³⁷Cs and unsupported ²¹⁰Pb by mineral soils and sediments. J. Environ. Radioactivity 30(2). 117-137.

- Kimoto, A., Nearing, M.A., Shipitalo, M.J. & Polyakov, V.O. (2006): Multi-year tracking of sediment sources in a small agricultural watershed using rare earth elements. Earth Surf. Process. Landforms 31. 173-1774.
- Knisel, W. G. (1980): CREAMS—a field scale model for chemicals, runoff, and erosion from agricultural management systems. USDA Convers. Res. Rep. 26, 643 p.
- Lal, R. (1976): Soil erosion on Alfisols in Western Nigeria: IV. Nutrient element losses in runoff and eroded sediments. Geoderma 16. 403-417.
- LUBW (2005a) Bestandsaufnahme der WRRL in Baden-Württemberg Methodenband. 2. Überarbeitete Auflage. 164 Seiten.
- LUBW (2005b) Liste der Hochwasserrückhaltebecken in Baden-Württemberg. Schriftliche Mitteilung, Bearbeiter: Herr B. Karolus.
- LUBW (2006): Hochwasserrückhaltebecken in Baden-Württemberg. Arbeitshilfe zur DIN 19700 (Gelbdruck Stand 12.2006). 138 S.
- Mabit, L., Bernard, C., Laverdiere, M. R. & Wicherek, S. (1999): Assessment of soil erosion in a small agricultural basin of the St. Lawrence River watershed Hydrobiologia 410. 1573-5117.
- Marsalek, J. & Marsalek P.M. (1997): Characteristics of sediments from a stormwater management pond. Wat. Sci. Tech. 36(8-9), 117-122.
- Ruf, J. (2005): Mündliche und schriftliche Mitteilungen zum Modellsystem MONERIS Baden-Württemberg der LUBW.
- Scheffer, F. & Schachtschabel, P. (1998): Lehrbuch der Bodenkunde. 14., neu bearb. und erw. Aufl. Enke, Stuttgart.
- Schwarz, M. (2004): Mikrobielle Kolmation von abwasserdurchsickerten Bodenkörpern: Nucleinsäuren zum Nachweis von Biomasse und Bioaktivität [online]. Karlsruhe, Univ., Fak. f. Bauingenieur- Geo- und Umweltwissenschaften. http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2004/bau-geo/6.
- Sharpley, A.N. (1980): The enrichment of soil phosphorus in runoff sediments. J. Environ. Qual. 9, S. 521-526.
- VDLUFA (1991): VDLUFA-Methodenbuch: Band I: Die Untersuchung von Böden. VDLUFA-Verlag, Darmstadt.
- Volkmann, H. N. (2002): Gelöste organische Kohlenstoffverbindungen (DOC) im Dürreychgebiet (Nordschwarzwald). Dissertation. Universität Karlsruhe.
- WaBoA (2004): Ministerium für Umwelt und Verkehr Baden-Württemberg & Landesanstalt für Umweltschutz Baden-Württemberg [Hrsg.] (2004): Wasser- und Bodenatlas Baden-Württemberg. 2. erweit. Ausgabe, Stuttgart.
- Waldmann, F. (2006): Bodenkundlicher Fachbeitrag des LGRB zum Projekt "Ableitung naturraumtypischer Anreicherungsfaktoren zur Bestimmung des Phosphor- und Schwermetalleintrages in Oberflächengewässer durch Erosion".

- Weigand, S., Schimmack, W. & Auerswald, K. (1998): The enrichment of ¹³⁷Cs in the soil loss from small agricultural watersheds. Z. Pflanzennähr. Bodenk., 162 S. 479-484.
- Wilke, B. & Schaub, D. (1996): Phosphatanreicherung bei Bodenerosion. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 79, S. 435-438.

5 Danksagung

Das Vorhaben wurde im Rahmen des Förderprojektes "Lebensgrundlage Umwelt und ihre Sicherung" (BWPLUS) am Forschungszentrum Karlsruhe mit Mitteln des Landes Baden-Württemberg gefördert.

Bei Herrn Dr. Norbert Billen (Fa. Boden-Nutz-Schutz) möchten wir uns für die Feldbegehungen zur Auswahl von geeigneten Ackerflächen für die Probenahmen recht herzlich bedanken.

Für die Aufarbeitung und Analyse der Boden- und Sedimentproben möchten wir uns bei Herrn und Frau Lambert (Fa. Bioplan Landeskulturgesellschaft) recht herzlich bedanken.

Bei den Betreibern der HRB möchten wir uns für die wichtigen Detailinformationen zu den einzelnen HRB recht herzlich bedanken. Des Weiteren haben die Landwirte und die Anwohner vor Ort mit wichtigen Informationen und Hilfestellungen die Feldarbeit erleichtert.

Für die tatkräftige und Mithilfe bei der oftmals anstrengenden Feldarbeit möchten wir uns bei den folgenden Personen recht herzlich bedanken:

Tobias Wirsing, Till Loeper, Massimo Randisi, Alexander Kurtz, Lucas Reidt, Mike Kemper, Alvaro Gauterin, Okke Ottenlinger, Markus Deck und Andrey Nabiev.

6 Anhang

A Besichtigte HRB1
B HRB-Standortcharakterisierungen3
C Charakterisierung der untersuchten Einzugsgebiete34
D Datumsangaben zu den Oberboden- und Sedimentbeprobungen
E Probenahmestellen und Analytik37
F Oberbodenauswertungen63
G Hochwasserbeprobungen und Hochwasserabflüsse68
H Korngrößenverteilungen: Mittelwerte u. Standardabweichungen in Prozent (Laser-Partikelmessungen)79
I Korngrößenverteilungen: Mittelwerte und Standardabweichungen in Prozent (Fraktionierungsmethode)79
J ER - Phosphor80
K ER - Schwermetalle86
L Abschlussbericht des LGRB105

A Besichtigte HRB

Tab. A.1: Liste der im Rahmen der Vorauswahl besichtigten HRB.

Nr.	Datum	Suchraum, Ort	Name HRB		
		Kraichgau			
1	08.05.2005	Mühlhausen	Waldangelbach		
2	08.05.2005	Angelbachtal-Eichtersheim	Mittelbach		
3	08.05.2005	Hoffenheim	Unter dem Balzfelder Weg		
4	08.05.2005	Angelbachtal-Eschelbach	Herrenbach		
5	08.05.2005	Obergimpern	Röten		
6	08.05.2005	Babstadt	Hagelhöhe		
7	08.05.2005	Bad Rappenau	Mühlbach		
8	08.05.2005	Bad Rappenau	Raubach		
9	08.05.2005	Biberach	Bruchbach		
10	08.05.2005	Massenbachhausen	M6		
11	08.05.2005	Bauerbach	Bauerbach		
12	08.05.2005	Büchig	Oberer Talbach		
13	08.05.2005	Untergrombach	Untergrombach		
14	13.05.2005	Waibstadt-Bernau	Bernau W18		
15	13.05.2005	Asbach	Schwarzwiese		
16	13.05.2005	Grombach	Langengraben		
17	13.05.2005	Obereisesheim	Schneideräcker		
18	13.05.2005	Obereisesheim	Seizentor		
19	13.05.2005	Untereisesheim	Mönchsgrund		
20	13.05.2005	Untereisesheim	Schlossweinberg		
21	13.05.2005	Oberderdingen	Schafgraben		
22	13.05.2005	Oberderdingen	Froschgraben		
23	13.05.2005	Bruchsal	Schattengraben		
24	13.05.2005	Heidelsheim	Stalzbach		
25	13.05.2005	Gondelsheim	Lohrgraben		
26	13.05.2005	Jöhlingen	Grund		
27	13.05.2005	Jöhlingen	Seewiesen		
28	25.05.2005	Kirchhardt	Hatzenbrunnen		
29	25.05.2005	Reihen	Reihen		
30	25.05.2005	Hoffenheim-Ursenbacher Hof	Ursenbach 1		
31	25.05.2005	Hoffenheim-Ursenbacher Hof	Ursenbach 2		
32	03.05.2005	Schwaigern	Schwaigern / Lein		
33	05.05.2005	Weingarten	Am Alten Schloss		
34	07.07.2005	Angelbachtal-Eichtersheim	Wiesenbach		
		Hohenlohe			
35	31.08.2005	Neuenstein	Emmertshof		
36	31.08.2005	Untermünkheim	Kupfer B19		
37	31.08.2005	Hermuthausen	Hermuthausen Unteres-		
38	31.08.2005	Berndshausen	Berndshausen-Seidelbach		
39	31.08.2005	Jagstberg	Jagstberg 4		
40	31.08.2005	Jagstberg	Jagstberg 5		
41	31.08.2005	Seidelklingen	Jagstberg 8		
42	31.08.2005	Mulfingen	Mulfingen Oberes-		
43	31.08.2005	Adolzhausen	Adolzhausen-Schönbühl		
44	31.08.2005	Wiesenbach	Wiesenbach		
		Albvorland			

45	21.11.2005	Bad Imnau	Feldbach		
46	21.11.2005	Rangendingen	Im Tal		
47	21.11.2005	Rangendingen	Wolfental		
48	21.11.2005	Grosselfingen	Talbach		
49	21.11.2005	Haigerloch-Owingen	Röthenbach		
50	21.11.2005	Haigerloch-Stetten	Schluchtgraben		
51	21.11.2005	Haigerloch-Weildorf	Schlattäckergraben		
52	21.11.2005	Rottweil-Neufra	Starzel		
53	21.11.2005	Frittlingen	Leintalbach		
54	21.11.2005	Frittlingen	Sulztalbach		
55	21.11.2005	Spaichingen	Unterbach II		
56	21.11.2005	Spaichingen	Unterbach I		
57	21.11.2005	Spaichingen	Leidengraben		
58	21.11.2005	Spaichingen	Lehmgraben		
59	21.11.2005	Spaichingen	Heidengraben		
60	21.11.2005	Gunningen	Lombach		
		Oberschwaben			
61	22.11.2005	Meckenbeuren	Alte Ziegelhütte		
62	22.11.2005	Ravensburg	Flappachweiher		
63	22.11.2005	Schlier	Schlier		
64	22.11.2005	Weingarten-Baeinfurt	Töbele		
65	22.11.2005	Fleischwangen	Fleischwangen		
66	22.11.2005	Altshausen	Alter Weiher		
67	22.11.2005	Aulendorf	Mahlweiher		
68	22.11.2005	Bad Waldsee - Mittelurbach	Mittelurbach		

B HRB-Standortcharakterisierungen

HRB Eichtersheim, Kraichgau

Abb. B.1: Stauraum des HRB Eichtersheim und Blick ins Einzugsgebiet in Richtung HRB.

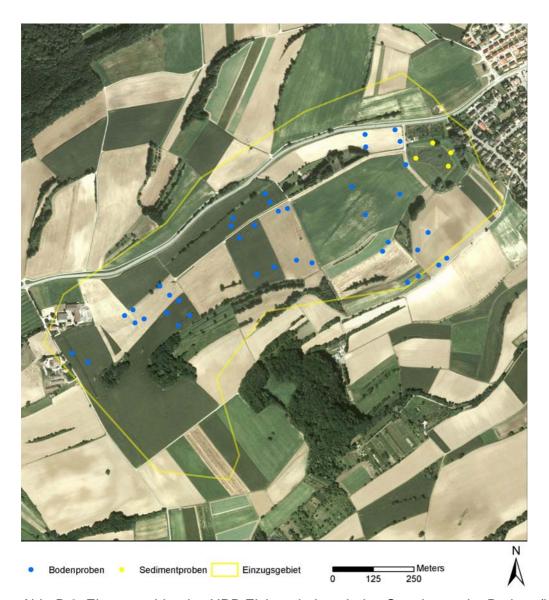


Abb. B.2: Einzugsgebiet des HRB Eichtersheim mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Grombach, Kraichgau

Abb. B.3: Stauraum des HRB Grombach mit dem Hochwasserprobenehmer und Detailansicht einer beprobten Ackerfläche mit Blick ins Einzugsgebiet.

Abb. B.4: Links: Nach einem Einstau ablaufendes Hochwasser. Am linken Bildrand sind die angeschwemmten organischen Feststoffe (Äste und Laub) und der Hochwasserprobenehmer zu sehen. Rechts: Mehrere Zentimeter mächtiges, noch nicht abgetrocknetes Hochwassersediment in damm- und bachnähe.

Abb. B.5: Links: Hochwasserprobe mit hohem Feststoffgehalt und bräunlich-mineralischer Färbung. Rechts: Hochwassersediment nach dem Abpumpen des Hochwasserüberstandes.

Abb. B.6: Nach einem Hochwasser auf gefrorenem Boden am Rechen des HRB zurückgeliebenes Laub. Bei diesem Hochwasserereignis wurde fast ausschließlich organisches Material mobilisiert und im Stauraum des HRB abgelagert.

Abb. B.7: Einzugsgebiet des HRB Grombach mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte). Auf der großen hellschattierten Ackerfläche im nördlichen Einzugsgebiet sind deutlich großflächige Erosionsspuren und die dazugehörigen Abflussrinnen zu erkennen.

HRB Babstadt, Kraichgau

Abb. B.8: Links: Stauraum des HRB Babstadt. Rechts: Eingestautes HRB.

Abb. B.9: Links: Blick in das Einzugsgebiet im Frühjahr in Richtung des HRB. Rechts: Mit Raps bepflanzte Ackerfläche.

Abb. B.10: Links: Hochwasserprobe mit hohem Feststoffgehalt und bräunlich-mineralischer Färbung. Rechts: Abgelagerte Hochwassersedimentschichten im Stauraum des HRB.

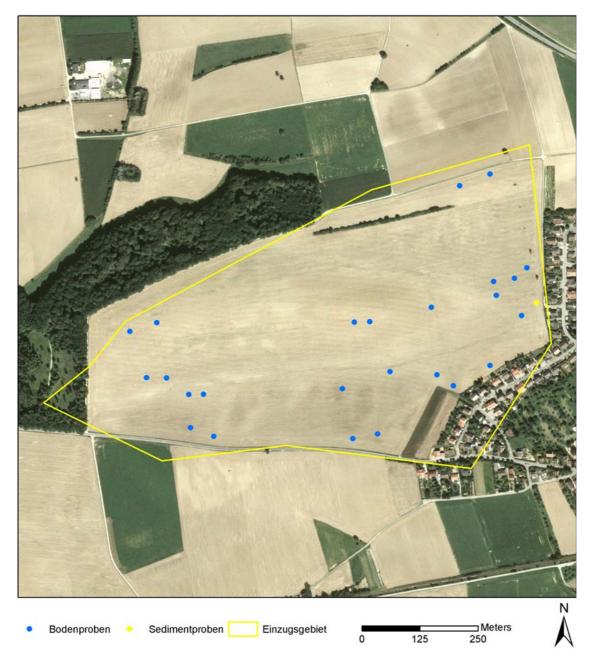


Abb. B.11: Einzugsgebiet des HRB Babstadt mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte). Deutlich sind zwei V-förmige Erosionsrinnen zu erkennen. Das HRB war zum Zeitpunkt dieser Aufnahme noch nicht gebaut.

HRB Neuenstein, Hohenlohe

Abb. B.12: Links: Stauraum des HRB Mittelurbach mit Blick Richtung Hochwasserdamm und Einlassbauwerk. Gut zu sehen ist das Hochwassersediment auf dem Weg. Rechts: Eingestautes HRB in der Übersicht.

Abb. B.13: Links und rechts: HRB im eingestauten Zustand.

Abb. B.14: Links: Detailansicht einer beprobten Ackerfläche und Blick in das Einzugsgebiet. Rechts: Abgeschwemmter Oberboden von einem Erdbeeracker nach längerem Regen.

Abb. B.15: Links: Bräunlich-gräulich gefärbtes Hochwasser. Rechts: Dazugehöriges Hochwassersediment nach dem Abpumpen des Hochwasserüberstandes.

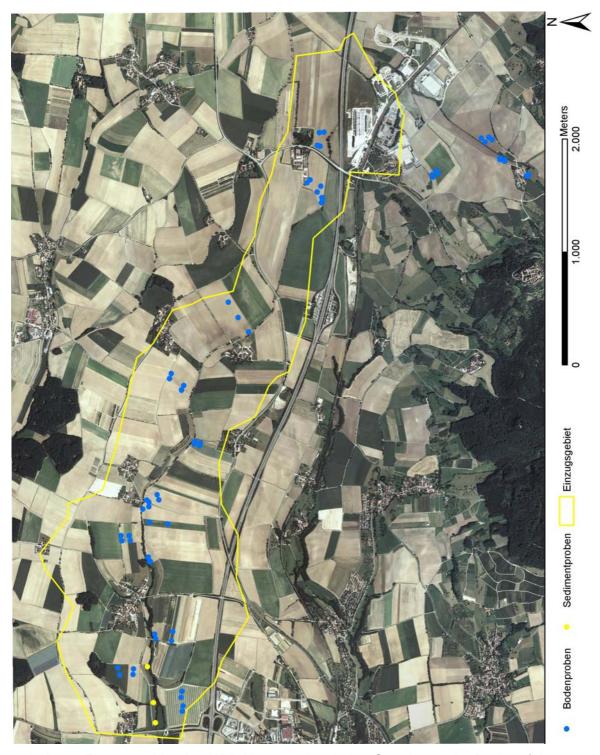


Abb. B.16: Einzugsgebiet des HRB Neuenstein mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte). Aufgrund einer Gewässerbegradigung wurde der untere rechte Bildausschnitt, der noch zum Einzugsgebiet des HRB Neuenstein gehört, bei der Erfassung der Einzugsgebietsgrenzen nicht aufgenommen.

HRB Berndshausen, Hohenlohe

Abb. B.17: Links: Stauraum des HRB Berndshausen. Rechts: Detailansicht einer beprobten Ackerfläche und Blick in das Einzugsgebiet.

Abb. B.18: Links: Ausgetrocknetes Abflussgerinne im Sommer. Rechts: Dasselbe Abflussgerinne während einer Hochwassersituation. Die mineralisch-bräunliche Hochwasserfarbe ist gut zu erkennen.

Abb. B.19: Links und rechts: Stauraum des HRB im eingestauten Zustand.

Abb. B.20: Links: Bräunlich-mineralische Farbe des Hochwassers beim Befüllen des Probenehmers. Rechts: Deutlich hellere Farbe des Hochwasserüberstandes nach dem Absedimentieren.

Abb. B.21: Links: Organische Feststoffe (insbesondere zerkleinerte Äste und Stöcke) die sich nach dem Einstau in Form eines Spülsaumes abgelagert haben. Rechts: Gräulichbräunliches Hochwassersediment nach dem Abpumpen des Hochwasserüberstandes.

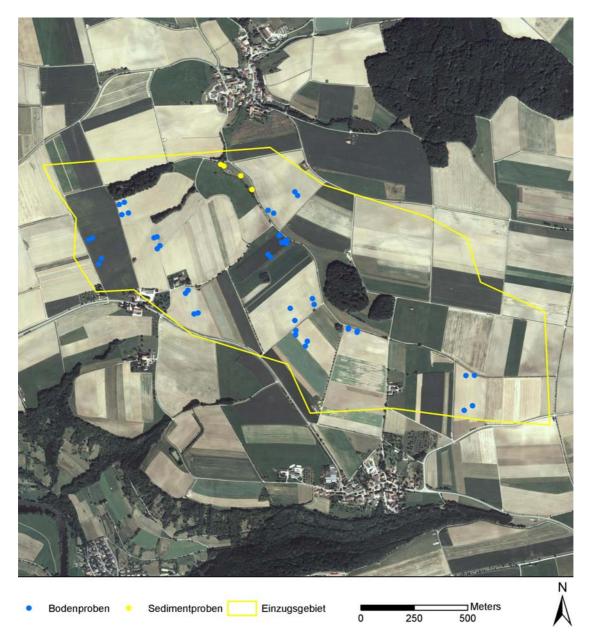


Abb. B.22: Einzugsgebiet des HRB Berndshausen mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Hermuthausen, Hohenlohe

Abb. B.23: Links: Blick in Richtung des HRB-Stauraumes, der vor der Gebüschgruppe liegt. Rechts: Blick vom Hochwasserdamm in das Einzugsgebiet.

Abb. B.24: Links und rechts: Nicht-eingestauter und eingestauter Stauraum des HRB. Die bräunlich-mineralische Hochwasserfarbe ist gut zu erkennen.

Abb. B.25: Links: Hochwasserüberstand nach dem Absedimentieren. Rechts: Bräunlichgräuliche Farbe des Hochwassersediment nach dem Abpumpen des Hochwasserüberstandes.

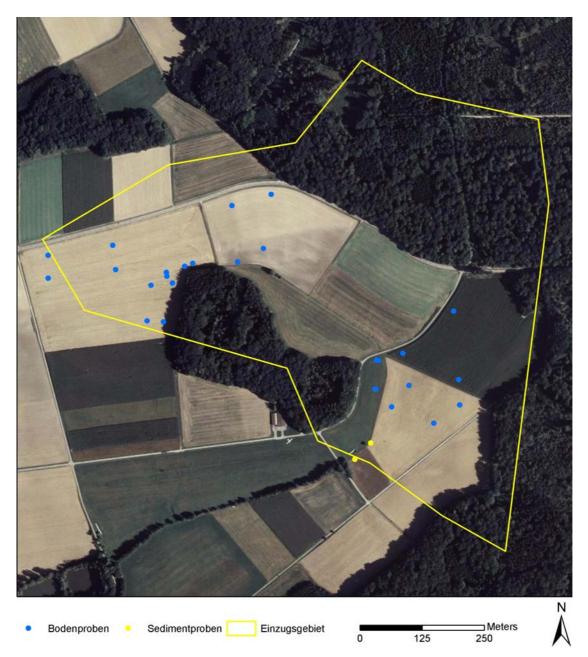


Abb. B.26: Einzugsgebiet des HRB Hermuthausen mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Seidelklingen, Hohenlohe

Abb. B.27: Links: Stauraum und Hochwasserdamm des HRB Seidelklingen. Rechts: HRB im Teileinstau.

Abb. B.28: Links und rechts: Detailansichten von beprobten Ackerflächen und Ansichten des Einzugsgebietes.

Abb. B.29: Links und rechts: Deutlich sichtbare Erosionsrinnen im Einzugsgebiet.

Abb. B.30: Links: HRB im eingestauten Zustand mit bräunlicher Hochwasserfarbe. Rechts: HRB-Stauraum nach dem Hochwassereignis. In der linken Bildmitte ist ein zurückgebliebener Spülsaum aus organischem Material zu erkennen. Der Bach ist sehr tief eingeschnitten und zeigt ebenfalls deutliche Erosionsspuren.

Abb. B.31: Links: Bräunlich-gräuliche Farbe des Hochwasserüberstandes nach dem Absedimentieren des Hochwassersedimentes. Rechts: Bräunlich-mineralische Farbe des Hochwassersedimentes nach dem Abpumpen des Hochwasserüberstandes.

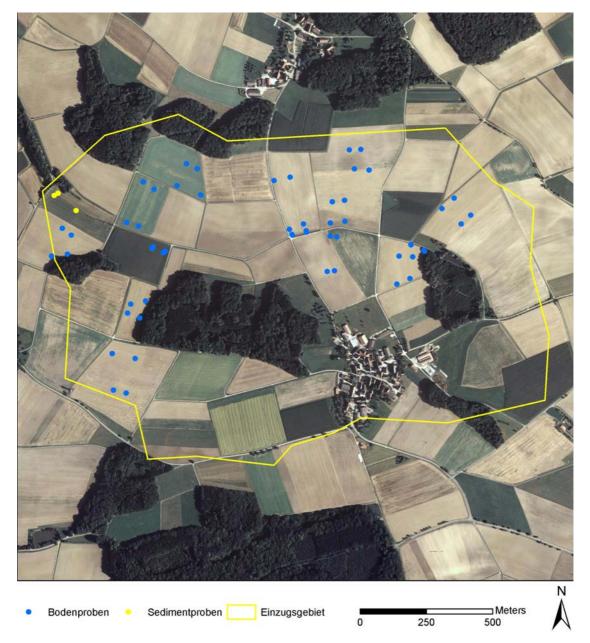


Abb. B.32: Einzugsgebiet des HRB Seidelklingen mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Haigerloch, Albvorland

Abb. B.33: Links: Stauraum des HRB Haigerloch. Rechts: Detailansicht einer beprobten Ackerfläche und Blick in das Einzugsgebiet.

Abb. B.34: Links und rechts: Nicht-eingestauter und eingestauter Stauraum des HRB.

Abb. B.35: Links: Eingestautes HRB. Rechts: Frisch abgepumptes Hochwasser. Die Hochwasserfarbe ist vergleichsweise durchsichtig und organisch-bräunlich gefärbt.

Abb. B.36: Links: Durchsichtiger, organisch-bräunlich gefärbter Hochwasserüberstand nach dem Absedimentieren. Rechts: Organisch-bräunlich gefärbtes Hochwassersediment nach dem Abpumpen des Hochwasserüberstandes.

Abb. B.37: Einzugsgebiet des HRB Haigerloch mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Grosselfingen, Albvorland

Abb. B.38: Links: Stauraum des HRB Grosselfingen. Rechts: Detailansicht einer beprobten Ackerfläche und Blick in das Einzugsgebiet.

Abb. B.39: Links: Stauraum des HRB Grosselfingen. Rechts: Stauraum nach einem Hochwasserereignis. Am linken Bildrand ist der Hochwasserprobenehmer zu sehen.

Abb. B.40: Links: Durchsichtiger, Mineralisch-bräunlich gefärbter Hochwasserüberstand nach dem Absedimentieren. Rechts: Mineralisch-bräunlich gefärbtes Hochwassersediment nach dem Abpumpen des Hochwasserüberstandes.

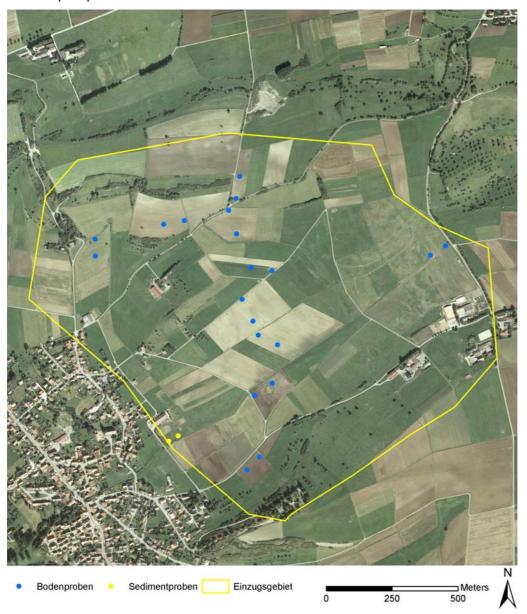


Abb. B.41: Einzugsgebiet des HRB Grosselfingen mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Spaichingen, Albvorland

Abb. B.42: Links: Stauraum des HRB Mittelurbach. Das Hochwassersediment wurde rechts enlang der Büsche und des Schilfbestandes entnommen. Rechts: Detailansicht des Einlaufbauwerkes.

Abb. B.43: Detailansicht einer beprobten Grünlandfläche (ungemähte Wiese bis zur Bildmitte) und Blick in das Einzugsgebiet in Richtung HRB.

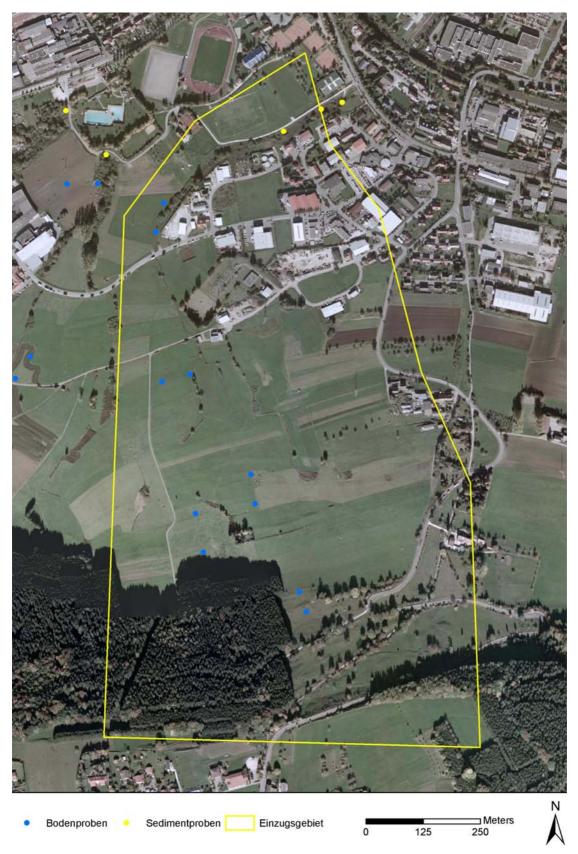


Abb. B.44: Einzugsgebiet des HRB Spaichingen mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Staufelberg Parkplatz, Albvorland

Abb. B.45: Links und rechts: Stauraum des HRB Staufelberg Parkplatz. Das Hochwassersediment wurde aus dem kleinen dauereingetauten Bereich entnommen.

HRB Staufelberg Schwimmbad, Albvorland

Abb. B.46: Links und rechts: Stauraum des HRB Staufelberg Schwimmbad. Das Hochwassersediment wurde aus dem kleinen dauereingetauten Bereich entnommen.

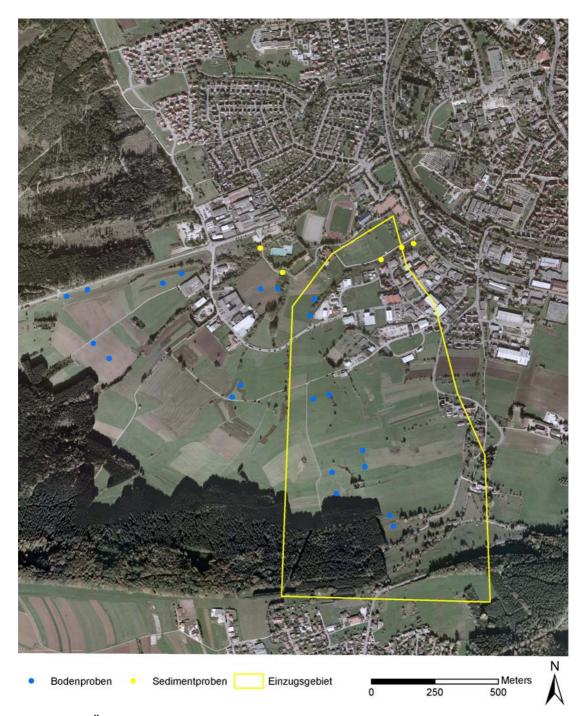


Abb. B.47: Übersicht über die beprobten HRB bei Spaichingen. Die gelbe Linie zeigt das Einzugsgebiet des HRB Spaichingen. Im Anschluss daran, südlich des Schwimmbades, befindet sich das HRB Staufelberg Schwimmbad und in direkter Nähe das HRB Staufelberg Parkplatz mit den jeweiligen Einzugsgebieten. Die beiden letztgenannten HRB wurden nur für Vergleichszwecke beprobt.

HRB Gunningen, Albvorland

Abb. B.48: Links: Blick entlang des Hochwasserdammes des HRB Gunningen. Rechts davon ist ein Teil des Stauraumes zu sehen. Rechts: Detailansicht einer beprobten Ackerfläche und Blick in das Einzugsgebiet.

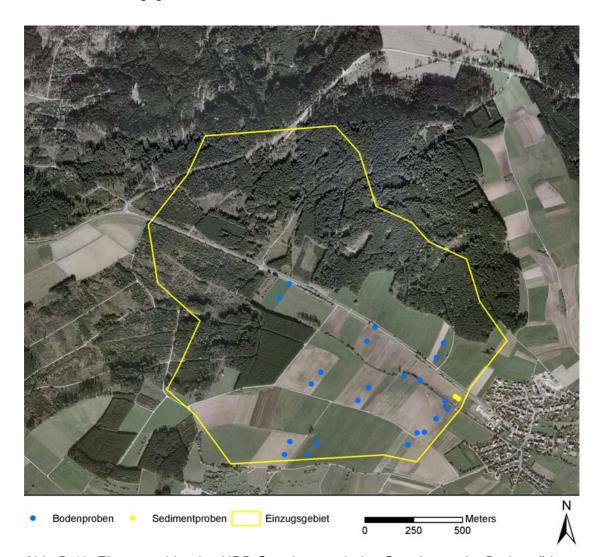


Abb. B.49: Einzugsgebiet des HRB Gunningen mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte).

HRB Fleischwangen, Oberschwaben

Abb. B.50: Links: Stauraum des HRB Fleischwangen. Rechts: Stauraum bei einem Hochwasserereignis.

Abb. B.51: Rechts und links: Detailansichten von beprobten Ackerflächen und Ansichten des Einzugsgebietes.

Abb. B.52: Links: Am rechten Bildrand sind deutlich die Wassermassen aufgrund einer Schneeschmelze zu erkennen, die seitlich in das Becken des HRB einströmen. Der bräunliche verfärbte Rand auf dem Schnee ist auf die Feststoffe im Hochwasser zurückzuführen. Rechts: Sehr klarer huminstofffarbener Hochwasserüberstand nach dem Absedimentieren des Hochwassersedimentes.

Abb. B.53: Einzugsgebiet des HRB Fleischwangen mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte). Die Moorgebiete gruppieren sich nördlicherseits um den Feldmooser Wald, der im mittleren Teil des Einzugsgebietes zu erkennen ist.

HRB Mittelurbach, Oberschwaben

Abb. B.54: Links: Stauraum des HRB Mittelurbach. Rechts: Detailansicht einer beprobten Ackerfläche und Blick in das Einzugsgebiet.

Abb. B.55: Links: Eingestautes HRB mit sehr klarem und huminstofffarbigem Hochwasser. Rechts: Huminstoffhaltiges Hochwassersediment nach dem Abpumpen des Hochwasserüberstandes.

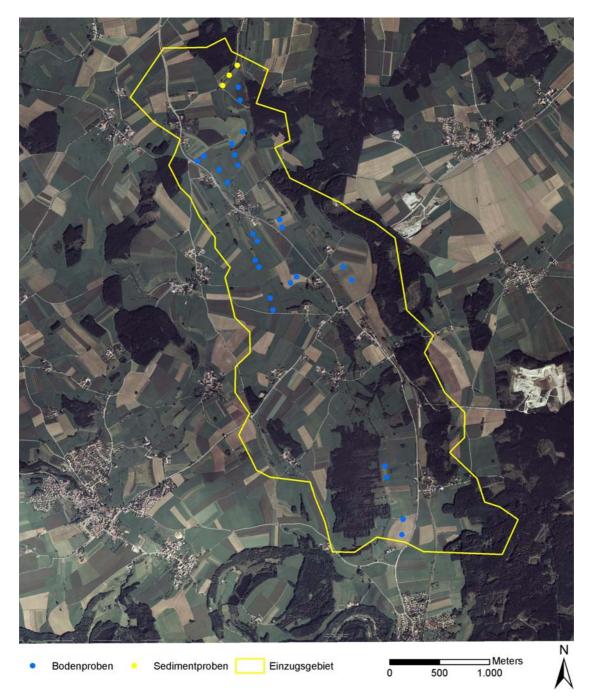


Abb. B.56: Einzugsgebiet des HRB Mittelurbach mit den Standorten der Boden- (blaue Punkte) und Sedimentprobenahmestellen (gelbe Punkte). Im südlichen Bereich des Einzugsgebietes ist das langgezogene Moorgebiet "Gaishäuser Ried" zu erkennen.

C Charakterisierung der untersuchten Einzugsgebiete

Tab. C.1: Flächengewichtete mittlere Landnutzung in den Einzugsgebieten. Datengrundlage: Abgeleitet aus dem Klassenzeichen der Bodenschätzung (Waldmann 2006).

Standort	Acker [%]	Grünland [%]	Sonstiges [%]	Grünland und Sonstige [%]	
EIC	82	7	12	18	
GRO	72	3	25	28	
BAB	90	0	10	10	
NEU	75	8	18	25	
BER	80	13	6	20	
HER	48	6	45	52	
SEI	68 12		20	32	
HAI	15	45	40	85	
GRS	37	53	10	63	
SPA	2	62	36	98	
GUN	23	11	67	77	
FLE	48	23	29	52	
MIT	43	33	24	57	

Tab. C.2: Flächengewichtete und generalisierte prozentuale Verteilung der Bodenarten in den Einzugsgebieten. Datengrundlage: Bodenübersichtskarte von Baden-Württemberg 1: 200 000 (Waldmann 2005). Die generalisierten Bodenartenbegriffe entsprechen inhaltlich nicht den Bodenartengruppen der aktuellen Bodenkundlichen Kartieranleitung (Ad-hoc-AG Boden 2005) sondern der älteren Bodenkundlichen Kartieranleitung (Ad-hoc-AG Boden 1982).

Standort	Sand	Sand- lehm	Lehm	Schluff	Lehm- schluff	Schluff- lehm [%]	Tonlehm	Sand- ton [%]	Torf
	[%]	[%]	[%]	[%]	[%]	ieiiii [/o]	[%]	1011 [/6]	[%]
EIC				90	10				
GRO					93	4	3		
BAB					96		4		
NEU				39			61		
BER				48			52		
HER				49			51		
SEI				8			92		
HAI		35			16		35	14	
GRS							100		
SPA							100		
GUN							100		
FLE		4	83						13
MIT		64	24						13

Tab. C.3: Flächengewichtete prozentuale Verteilung der mittleren Ton-, Schluff- und Sandgehalte in den Oberböden der Einzugsgebiete. Datengrundlage: Bodenübersichtskarte von Baden-Württemberg 1: 200 000 (Waldmann 2006).

Standort	mittl. T [%]	mittl. U [%]	mittl. S [%]
EIC	11	78	11
GRO	21	64	15
BAB	21	64	15
NEU	25	62	13
BER	23	64	13
HER	23	65	13
SEI	33	53	15
HAI	25	41	34
GRS	35	50	15
SPA	35	50	15
GUN	35	50	15
FLE	16	42	29
MIT	16	28	44

Tab. C.4: Mittlere C_{org} -Mengen in den Oberböden der Einzugsgebiete und deren flächenhafte prozentuale Verteilung. Datengrundlage: WaBoA (2004).

Standort	Corg [t/ha]	50-90	50-130	100-140	140-220	600-900	Ort
	mittl. C _{org}	70	90	120	180	750	-
EIC	65	87%	5%	-	-	-	8%
GRO	120	-	-	100%	-	-	-
BAB	120	1%	-	99%	-	-	-
NEU	129	12%	26%	24%	38%	-	-
BER	133	-	52%	-	48%	-	-
HER	127	-	59%	-	41%	-	-
SEI	94	-	96%	-	4%	-	-
HAI	71	99%	-	1%	-	-	-
GRS	83	82%	-	-	14%	-	4%
SPA	91	37%	-	54%	-	-	9%
GUN	92	53%	-	46%	-	-	1%
FLE	206	-	27%	58%	-	15%	-
MIT	179	15%	10%	64%	-	11%	-

D Datumsangaben zu den Oberboden- und Sedimentbeprobungen

Böden Grombach: 26.07.05 Sedimente Grombach: 25.05.05

Böden und Sedimente Babstadt: 04.05.06 Böden und Sedimente Eichtersheim: 05.05.06

Sedimente Hohenlohe: 11.05.06 Böden Hohenlohe: 17.-19.05.06

Sedimente Albvorland, Oberschwaben: 07.-08.06.06 Böden Albvorland, Oberschwaben: 16.-18.10.06

E Probenahmestellen und Analytik

Oberbodenproben (mit Links zu den Fotos der Probenahmestellen)

Sedimentproben

Hochwasserproben

Ort	Probenname	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO₃	TC	TIC	TOC	Carb
17		0.100000	5.15.1000	m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
Kraichgau	EIC_B1	a 3482086	5454328	212	1129	0,21	24	14	22	16	48	298	10,8	2,4	1,4	1,0	11,6
Eichtersheim		b 3481941	5454206	237													
(EIC)	_		5454234 5454350	237 214													
	EIC B2		5454396	209	1003	0,19	39	13	30	16	47						
			5454351	209	1003	0,19	39	13	30	10	41						
			5454320	224													
			5454359	209													
	EIC_B3		5454368	211	1246	0,22	31	13	24	17	46	346	7,3	2,1	1,0	1,1	8,0
	<u></u>		5454441	206	12.10	0,22	01	10		.,	10	0.10	7,0	- , ·	1,0	٠,٠	0,0
		c 3482193	5454413	203													
	_		5454340	212													
	EIC_B4		5454629	194	1211	0,24	33	15	26	20	54						
			5454500	205		-,											
	_		5454477	208													
	_		5454589	198													
	EIC_B5		5454627	202	992	0,28	26	14	23	20	63						
		b 3482501	5454699	192													
		c 3482486	5454725	192													
		d 3482388	5454650	196													
	EIC_B6	a 3482527	5454671	194	921	0,22	28	14	25	20	53	150	2,1	1,3	0,3	1,0	2,8
	_		5454521	208													
	_		5454513	208													
			5454680	195													
	EIC_B7	a 3482919	5454815	185	1219	0,22	24	12	20	17	48	208	14,0	3,3	0,6	2,7	4,8
	_		5454746	191													
	_		5454661	199													
			5454724	189	007	0.00	00	•	0.4	45	40	405	45.7	0.4	4.0	4.0	40.7
	EIC_B8	a 3482902	5454887	180	937	0,20	22	9	21	15	42	135	15,7	3,1	1,3	1,8	10,7
	_	b 3482796	5454870	182													
	_		5454908 5454922	181 182													
	EIC B9		5454552	191	977	0,15	21	10	22	13	37	88	19,0	3,5	0,0	3,5	0,0
	EIC_B9		5454506	197	911	0,15	۷1	10	22	13	31	00	19,0	3,5	0,0	3,5	0,0
			5454527	198													
	 		5454606	187													
	EIC_B10 _		5454576	194	891	0,24	33	15	26	19	52						
			5454472	200	001	U, Z ¬	00	10	20	10	02						
			5454452	200													
			5454548	188													
	_	. 0.020.0	0.0.0	. 50													

Ort	Probenname		Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO ₃	TC	TIC	TOC	Carb
Crambach	GRO_B1		2501117	E4E4076	m ü.NN	[mg/kg] 673	[mg/kg]	[mg/kg] 33	[mg/kg] 14	[mg/kg] 25	[mg/kg] 21	[mg/kg] 43	[mg/kg]	[%]	[%]	[%]	[%]	[%]
Grombach		_a	3501117	5454976	-	6/3	0,18	33	14	25	21	43						
(GRO)	CDO D2	_b	3501093 3501288	5455075 5455140	-	833	0,19	46	18	37	21	62	74	0,2	1,1	0.0	1,1	0.0
	GRO_B2	_a _b	3501266	5455140	-	033	0,19	40	10	31	21	02	74	0,2	1,1	0,0	1,1	0,0
	GRO_B3	_b _a	3501209	5455358	_	857	0,13	43	17	37	18	55						
	GIVO_B5	_a _b	3501571	5455457	_	007	0,13	70	17	31	10	55						
	GRO B4	_b _a	3501759	5455320	_	1015	0,15	42	18	33	20	60						
		_b	3501749	5455420	_	1010	0,10		.0	00	20	00						
	GRO_B5	_~ _a	3501052	5455466	_	922	0,19	43	13	33	26	48						
		_b	3501146	5455507	_		-,											
	GRO_B6	_a	3500956	5455641	-	764	0,16	48	17	41	30	52	132	0,3	1,2	0,0	1,1	0,3
		_b	3501052	5455671	-		,							,	,	,	,	•
	<u>GRO B7</u>	а	3501069	5455725	-	1211	0,18	51	23	51	31	58	246	7,6	2,2	1,0	1,2	8,0
		_b	3501044	5455811	-													
	<u>GRO B8</u>	а	3500949	5455201	-	989	0,20	35	13	31	20	46						
	<u>-</u>	_b	3500970	5455104	-													
	GRO_B9	_a	3500761	5454712	-	962	0,22	21	11	17	24	55	132	0,0	1,0	0,0	1,0	0,0
	-	_b	3500692	5454785	-													
Babstadt	BAB B1	_a	3503945	5456463	250	733	0,11	42	12	31	16	47	112	2,3	1,2	0,3	1,0	2,2
(BAB)		_b	3503918	5456441	263		•							•		-	,	·
, ,	_	_c	3503873	5456434	260													
	_	_d	3503865	5456666	286													
		_e	3503800	5456641	283													
		_a	3503879	5456404	254	681	0,11	38	13	26	19	45						
		_b	3503606	5456347	273													
		_c	3503573	5456346	272													
	_	_d	3503739	5456378	261													
	BAB B3	а	3503125	5456226	276	739	0,14	87	18	52	19	68	62	0,4	1,0	0,1	0,9	0,5
	-	_b	3503089	5456326	284													
	_	_c	3503147	5456345	286													
		_d	3503168	5456225	275													
		_a	3503216	5456189	274	715	0,14	100	18	57	18	47						
		_b	3503220	5456118	277													
	-	_c	3503270	5456099	277													
		_d	3503248	5456190	273													
	<u>BAB_B5</u>	_a	3503650	5456239	260	830	0,14	67	24	49	25	51						
	-	_b	3503623	5456104	270													
		_c	3503570	5456094	272													
	-	_d	3503547	5456202	264													

Ort	Probenname		Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni .	Pb	Zn	P ₂ O ₅	CaCO ₃	TC	TIC	TOC	Carb
	DAD DC		2502022	E4E0200	m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg] 16	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
	<u>BAB_B6</u>	_a	3503933 3503786	5456360 5456208	257 262	809	0,14	47	16	32	20	43	137	0,4	1,2	0,0	1,2	0,0
		_p	3503766	5456252	256													
		_c _d	3503751	5456232	263													
		_u	3303731	5450252	203													
Hohenlohe	NEU_B1	_a	3543484	5454145	331	2034	0,18	51	28	39	27	67	612	4,8	2,5	0,7	1,8	5,9
Neuenstein		_a _b	3543475	5454005	317													
(NEU)		_c	3543424	5454010	317													
		_d	3543421	5454129	327													
	NEU_B2	_a	3548160	5450832	368	1824	0,19	54	15	33	41	70	714	1,3	2,5	0,2	2,4	1,4
		_b	3548138	5450894	364													
		_c	3548173	5450928	363													
		_d	3548182	5450861	367													
	NEU_B3	_a	3547828	5451355	376	1346	0,21	32	22	31	31	70						
		_b	3547864	5451311	370													
		_c	3547886	5451325	371													
		_d	3547850	5451362	376													
	<u>NEU_B4</u>	_a	3548223	5452362	355	1300	0,32	30	21	28	38	60						
		_b	3548110	5452379	356													
		_c	3548102	5452354	355													
	NEU DE	_d	3548228	5452321	355	4004	0.40	50	0.4	00	0.4	0.4	004	0.0	4.0	0.4		0.7
	NEU_B5	_a	3547696	5452381	351	1091	0,16	52	21	32	31	64	304	3,0	1,8	0,4	1,4	3,7
		_b	3547779	5452470	357													
		_c	3547804	5452444	354													
	NELL DO	_d	3547749 3543276	5452349 5453576	352	004	0.40	20	45	40	0.4	40	252	0.0	4.0	0.0	4.0	0.4
	NEU_B6	_a	3543276 3543147	5453576 5453567	316 323	904	0,18	20	15	16	24	40	352	0,2	1,0	0,0	1,0	0,1
		_b	3543147	5453567 5453575	323 324													
		_c	3543222	5453575	324													
	NEU_B7	_d	3543724	5453668	325	1251	0,15	47	17	28	36	61	328	0,2	1,2	0,0	1,2	0,0
	NLO_D/	_a _b	3543743	5453809	312	1231	0,13	7/	17	20	30	01	320	0,2	1,2	0,0	1,2	0,0
		_c _b	3543784	5453818	312													
		_d	3543805	5453658	328													
	NEU B8	_a	3544890	5453923	325	1260	0,18	23	14	18	18	40	230	0,1	1,3	0,0	1,3	0,0
		_b	3544913	5453870	335	1200	0,10	20	• •	10	10	10	200	0, 1	1,0	0,0	1,0	0,0
		_c	3544759	5453702	339													
		_d	3544774	5453866	328													
	NEU B9	_a	3544970	5453889	328	882	0,17	24	11	18	18	30	176	0,1	1,7	0,0	1,7	0,0
	<u></u>	_b	3545017	5453796	330		٠, ٠٠			. •	. •			٠,٠	.,.	٥,٠	.,.	0,0
		_c	3544972	5453782	332													
			· · · · -		- 													

Ort	Probenname		Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO₃	TC	TIC	TOC	Carb
					m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
		_d	3544954	5453869	326	4005	0.45	40	40	0=			0.40		4.0		4.0	
	NEU_B10	_a	3545490	5453461	326	1205	0,15	42	18	27	20	59	348	0,2	1,3	0,0	1,3	0,3
		_b	3545475	5453413	338													
		_c	3545453	5453420	338													
	NEU D44	_d	3545469	5453469	330	4404	0.05	04	47	00	04	00	040	0.0	4.0	0.0	4.4	0.0
	<u>NEU_B11</u>	_a	3546457 3546585	5452988	344	1404	0,35	21	17	20	21	60	212	2,2	1,8	0,3	1,4	2,9
		_b	3546585	5453081 5453081	348 348													
		_c	3546721	5453167														
	NEU B12	_d	3546088	5453672	351 349	1256	0,33	45	21	29	25	82	284	2,9	2,4	0,5	2,0	4,0
	INEU_BIZ	_a	3545983	5453561	349 342	1230	0,33	40	۷1	29	25	02	204	2,9	2,4	0,5	2,0	4,0
		_b	3545944	5453581	341													
		_c _d	3546043	5453687	345													
		_u _a	3544610	5454034	332	1513	0,19	48	25	40	27	63	254	7,0	3,0	0,9	2,0	7,8
		_b	3544610	5454110	338	1010	0,13	70	20	70	21	00	204	7,0	3,0	0,3	2,0	7,0
		_c _b	3544654	5454117	336													
		_d	3544655	5454045	331													
	NEU TP1	_a _a	3547982	5450717	386	1618	0,20	25	17	26	37	190	832	5,1	3,2	0,8	2,4	6,4
		_b	3547985	5450764	356	1010	0,20		• • •		0.	.00	002	0, .	0,2	0,0	_, .	٥, ١
		_c	3547998	5450761	364													
		_d	3547970	5450723	367													
	NEU TP	_a	3547842	5450510	372	1133	0,17	46	31	31	23	126	352	10,0	4,1	0,8	3,4	6,3
	_	_b	3547837	5450521	372		,							,	•	,	,	,
		_c	3547841	5450525	372													
		_d	3547854	5450513	372													
	NEU TP2	_ _a	3547607	5452337	350	1112	0,38	31	23	26	99	70	392	2,7	3,6	0,5	3,1	4,2
		_b	3547645	5452331	349													
		_c	3547646	5452339	349													
		_d	3547602	5452345	350													
	NEU_TP3	_a	3544422	5453861	321	973	0,18	20	11	19	18	30	100	0,1	1,5	0,0	1,5	0,0
		_b	3544464	5453878	317													
		_c	3544466	5453873	319													
		_d	3544426	5453854	320													
Dame dala access	DED D4	_	0555705	E4000E0	404	005	0.47	00	40	00	004	77						
Berndshausen	BEK_BI	_a	3555705	5460958	421	965	0,17	33	19	23	204	77						
(BER)		_p	3555692	5460998	418													
		_c	3555678	5460994	417													
	DED DO	_d	3555693 3555539	5460942	419	1074	0.10	22	12	16	21	E0	126	0.1	1 5	0.0	1 5	0.0
	BER_B2	_a	3555539 3555527	5461161	423 420	1074	0,18	22	13	16	21	58	136	0,1	1,5	0,0	1,5	0,0
		_b	3000027	5461102	420													

Ort	Probenname)	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO ₃	TC	TIC	TOC	Carb
					m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
		_c	3555558	5461110	419													
	DED D0	_d	3555515	5461151	420	4.400		00	40	40	00		400		4.0		4.0	
	BER_B3	_a	3556238	5461109	407	1182	0,27	28	19	40	23	53	133	0,2	1,6	0,0	1,6	0,0
		_b	3556350	5461193	416													
		_c	3556337	5461210	414													
	DED D4	_d	3556211	5461123	406	000	0.04	07	40	0.4	40	50						
	BER_B4	_a	3556342	5460559	424	920	0,21	27	12	21	40	59						
		_b	3556396	5460510	429													
		_c	3556386	5460487	431													
	DED DE	_d	3556341	5460539	427	4040	0.00	0.4	4.4	00	040	00						
	BER_B5	_a	3556337	5460606	424	1213	0,22	31	14	22	819	69						
		_b	3556428	5460681	416													
		_c	3556420	5460708	416													
	DED D0	_d	3556315	5460663	422	000	0.04	00	40	0.4	0.5	7.4	07	0.4				
	BER_B6	_a	3555419	5460871	430	982	0,21	30	19	21	25	71	97	0,1				
		_b	3555372	5460984	428													
		_c	3555389	5460993	429													
	DED D7	_d	3555431	5460897	429	4000	0.07	20	45	40	0.4	60	400	0.4	4.4	0.0	4.4	0.0
	BER_B7	_a	3557178	5460349	438	1323	0,27	29	15	18	24	63	123	0,1	1,4	0,0	1,4	0,0
		_b	3557169	5460207	441													
		_c	3557130	5460185	442													
	DED DO	_d	3557138	5460348	436	004	0.04	20	40	00	74	5 0			4.0	0.0	4.0	0.0
	BER_B8	_a	3556299 3556224	5460966 5460903	411	894	0,21	30	13	23	71	53			1,8	0,0	1,8	0,0
		_b	3556224		415													
		_c		5460916	416													
	BER B9	_d	3556275 3555837	5460972 5460747	412 418	1135	0.40	27	13	16	123	66	98	0.1	2,0	0.0	2,0	0.0
	DEK_D9	_a	3555884	5460747	422	1135	0,19	21	13	10	123	00	90	0,1	2,0	0,0	2,0	0,0
		_b																
		_c	3555865	5460636 5460733	424													
	BER TP2	_d	3555825	5460733	419	1151	0.20	29	14	24	27	60						
		_a	3556298 3556267	5461007	409	1154	0,30	29	14	24	21	60						
		_p	3556267	5461007	408													
		_c	3556294	5460980	409 411													
	BER_TP3	_d	3556589	5460571	411	1443	0,28	42	16	35	27	75	95	0,1	2,4	0,0	2,4	0,0
	DEK_IF3	_a	3556630	5460571	420 421	1443	0,20	42	10	30	21	75	90	υ, ι	۷,4	0,0	۷,4	0,0
		_b	3556629	5460557 5460552	419													
		_c	3556587	5460566	419 421													
Hermuthausen	HED D1	_d	3555018	5464563	421 427	1747	0,22	36	21	38	23	56						
	HEK_DI	_a		5464602	427 418	1/4/	0,22	30	۷1	30	23	50						
(HER)		_b	3554916	2404002	418													

Ort	Probenname	•	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO ₃	TC	TIC	TOC	Carb
			0554004	F404550	m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
		_c	3554881 3554966	5464559 5464526	415													
	HER B2	_d	3555016	5464614	422 427	1406	0,20	30	13	25	22	55	350	0,7	2,5	0,0	2,5	0,0
	HER_DZ	_a	3554904	5464667	418	1400	0,20	30	13	23	22	55	330	0,7	2,5	0,0	2,5	0,0
		_c _b	3555006	5464752	425													
		_d	3555006	5464752	425													
	HER B3	_a	3554571	5464851	416	1733	0,19	33	12	19	27	56	136	0,1	1,7	0,0	1,7	0,0
	TIETBO	_b	3554560	5464964	426	1700	0,10	00	12	10		00	100	0,1	.,,	0,0	.,,	0,0
		_c	3554639	5464987	428													
		_d	3554623	5464878	419													
	HER_B4	_a	3554422	5464730	428	1037	0,19	30	15	18	24	55						
	_	_b	3554440	5464808	420		,			-								
		_c	3554397	5464804	423													
		_d	3554389	5464732	429													
	HER_B5	_ _a	3554190	5464818	431	1459	0,19	22	11	15	23	50	113	0,0	1,7	0,0	1,7	0,0
	_	_b	3554326	5464835	426													
		_c	3554320	5464884	427													
		_d	3554190	5464864	430													
	HER_TP2	_a	3554851	5464653	414	1603	0,18	47	19	36	22	77						
		_b	3554848	5464595	413													
		_c	3554850	5464595	413													
		_d	3554855	5464652	413													
	HER_TP3	_a	3554465	5464842	418	1477	0,17	37	15	25	23	87	218	0,2	2,3	0,0	2,3	0,0
		_b	3554429	5464822	423													
		_c	3554428	5464830	422													
		_d	3554481	5464848	416													
Seidelklingen	SEI_B1	_a	3554813	5467133	394	1677	0,67	52	39	52	31	129	256	0,1	1,8	0,0	1,8	0,0
(SEI)		_b	3554828	5467205	383													
		_c	3554794	5467231	386													
		_d	3554754	5467126	401													
	SEI_B2	_a	3555099	5467405	406	1395	0,57	31	26	56	26	78						
		_b	3555037	5467253	387													
		_c	3555082	5467239	387													
		_d	3555141	5467378	404													
	SEI_B3	_a	3555316	5467357	407	1452	0,24	22	29	37	28	72	324	1,2	2,3	0,1	2,2	1,0
		_b	3555303	5467455	417													
		_c	3555263	5467474	412													
	CEL D4	_d	3555227	5467392	408	4450	0.00	25	04	20	25	00	400	0.0	4.0	0.0	4.0	0.0
	SEI_B4	_a	3555108	5466957	397	1452	0,33	25	21	36	25	83	162	0,2	1,9	0,0	1,9	0,0

Ort	Probennam	ne	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO₃	TC	TIC	TOC	Carb
	,				m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
		_b	3555052	5466945	405													
		_c	3555040	5466911	407													
	OEL DA	_d	3555086	5466892	398	4045	0.40	0.4	4.4	00	0.4	40						
	<u>SEI_B4_a</u>	_a	3554983	5466758	414	1015	0,19	24	14	26	24	48						
		_b	3554987	5466620	426													
		_c	3555035	5466609 5466740	423													
	SEI_B5	_d	3555069 3555651	5467227	410 402	1204	0,24	26	22	45	25	42	181	2,5	2,5	0,3	2,1	2,7
	SEI_BS	_a		5467411	415	1204	0,24	20	22	40	25	42	101	2,5	2,5	0,3	۷, ۱	۷,۱
		_b _b	3555653	5467424	415													
			3555704	5467247	402													
	<u>SEI_B6</u>	_d _a	3555951	5467450	415	1121	0,20	28	14	32	21	31	154	1,1	1,9	0,1	1,8	1,0
	<u>OLI_BO</u>	_b		5467528	418	1121	0,20	20	17	02	۷.	01	104	','	1,5	0, 1	1,0	1,0
		_c	3555877	5467527	419													
		_d	3555896	5467455	414													
	SEL_B7	_a _a	3556105	5467042	413	551	0,17	26	8	16	30	34						
	<u></u>	_b	3556116	5467123	406	• • • • • • • • • • • • • • • • • • • •	•,		Ū	. •		٠.						
		_c	3556064	5467126	407													
		_d	3556056	5467020	411													
		_e	3556109	5467170	406													
	SEI_B8	а	3556226	5467305	406	714	0,23	29	12	28	114	79						
	_	_b	3556299	5467247	414													
		_c	3556334	5467280	417													
		_d	3556272	5467345	413													
	<u>SEI_B9</u>	_a	3555805	5467251	403	310	0,22	29	14	28	27	47	82	0,0	2,0	0,0	2,0	0,0
		_b	3555812	5467331	411													
		_c	3555858	5467336	410													
		_d	3555860	5467257	404													
	<u>SEI_B10</u>	_a	3555804	5467201	402	1092	0,19	27	15	25	23	65	133	0,1	1,4	0,0	1,4	0,0
		_b	3555793	5467068	409													
		С	3555821	5467071	412													
	0=: ==0	_d	3555830	5467198	403													
	SEI_TP2	_a	3555183	5467145	385	1417	0,52	38	26	36	24	100						
		_b	3555137	5467161	384													
		_c	3555132	5467154	384													
	CEL TOO	_d	3555176	5467139	384	1000	0.00	40	22	40	00	60						
	SEI_TP3	_a	3555661	5467206	392	1066	0,32	46	23	40	26	63						
		_b	3555715	5467216	394													
		_c	3555714 3555660	5467222 5467208	395 393													
		_d	3333000	3407200	393													

Ort	Probenname	е	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO ₃	TC	TIC	TOC	
	SEI_TP4		3556109	5467168	m ü.NN 406	[mg/kg] 1064	[mg/kg] 0,22	[mg/kg] 37	[mg/kg] 16	[mg/kg] 32	[mg/kg] 27	[mg/kg] 72	[mg/kg]	[%]	[%]	[%]	[%]	[%]
	SEI_IP4	_a _b	3556159	5467144	409	1004	0,22	31	10	32	21	12						
		_c	3556157	5467148	408													
Albvorland			0000107	0407 140	400													
Haigerloch-	HAL B1	_a	3482997	5359039	526	1534	0,35	20	21	35	19	51						
Weildorf		_b	3483050	5359056	524		-,											
(HAI)	HAI B2	_ _a	3482965	5359025	527	724	0,18	22	20	30	21	50	282	8,4	2,9	1,2	1,7	9,6
, ,	_	_b	3482948	5359096	531													
	HAI_B3	а	3482666	5359097	534	1360	0,15	19	12	18	16	46	197	0,1	4,4	0,0	4,4	0,0
		_b	3482687	5359006	532													
	HAI_B4	_a	3482603	5358727	538	1031	0,19	22	14	21	24	55	206	0,0	1,6	0,0	1,6	0,0
		_b	3482704	5358758	538													
	HAI_TP2	_a	3482856	5358886	531	1523	0,30	24	17	26	20	49						
		_b	3482883	5358931	529													
	HAI_B5	_a	3482809	5358683	539	872	1,26	22	13	22	20	48	92	0,4	3,1	0,1	3,1	0,5
	50	_b	3482732	5358671	542	400=	0.40		40	0.4	0.5	- 4						
	HAI_B6	_a	3482796	5358588	543	1027	0,18	20	13	21	25	51						
	LIAL DZ	_b	3482876	5358625 5358414	539	1110	0.00	0.4	15	27	47	5 0						
	HAI_B7	_a	3482209 3482249	5358414	561	1110	0,08	24	15	21	17	53						
		_b	3402249	3336414	558													
Grosselfingen	GRS B1	_a	3492477	5354998	536	1434	0,35	27	31	56	13	117	37	0,1	3,4	0,0	3,4	0,0
(GRS)	<u> </u>	_b	3492428	5354949	537		0,00		٠.		. •		•	٠, .	٠, .	0,0	٥, .	0,0
(3.13)	GRS B2	_~ _a		5355231	528	1455	0,25	36	33	54	11	94						
		_b	3492525	5355278	528		-, -											
	GRS B3	_ _a	3493182	5355799	562	1466	0,20	27	44	100	9	134	165	5,8	7,7	0,8	6,9	6,9
	_	_b	3493125	5355763	556													
	GRS_B4	_a	3492388	5355979	566	1142	0,22	27	33	104	27	130	36	24,3	5,3	0,9	4,4	7,7
		_b	3492402	5356063	573													
	GRS_B5	_a	3492360	5355934	565	1220	0,29	22	25	47	33	94	55	9,2	5,0	1,2	3,8	10,0
		_b	3492390	5355844	553													
	GRS_B6	_a	3492192	5355895	561	1363	0,27	39	33	91	70	124						
	000 07	_b	3492114	5355881	565	4000	0.40	0.5	0.4	4.4	00	0.4						
	GRS_B7	_a	3491854	5355824	554 546	1399	0,13	35	24	44	28	81						
	GRS B8	_b	3491855 3492524	5355760 5355705	546 555	1201	0,20	31	24	25	36	60	39	0,1	2,2	0,0	2,2	0,1
	GRS_BO	_a	3492524	5355705	555 554	1391	0,20	31	24	25	30	60	39	U, I	2,2	0,0	2,2	0, 1
	GRS B9	_b	3492445	5355717 5355596	554 550	1052	0,10	31	22	30	34	55						
	GK2_D9	_a _b	3492411	53555514	542	1002	0,10	31	22	30	J 4	55						
	GRS B10	_b a	3492472	5355461	537	1327	0,09	34	19	29	34	59	37	0,1	2,7	0,0	2,7	0,0
	C110_D10	_u	0-102-17Z	3000-01	001	1021	0,00	0-	10	20	0-1	00	01	0, 1	۷, ۱	0,0	۷, ۱	0,0

Ort	Probenname		Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO ₃	TC	TIC	TOC	Carb
			0400545	5055404	m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
	-	_b	3492545	5355424	536													
Spaichingen	SPA B1	_a	3479593	5325521	678	1664	0,12	38	17	21	35	74	150	0,1	9,6	0,0	9,6	0,0
(SPA)		_b	3479576	5325457	684	1001	0,	00	• • •		00	• •	100	0, .	0,0	0,0	0,0	0,0
(3.7.)		_~ _a	3479589	5325130	693	1580	0,11	60	17	39	31	100						
		_b	3479650	5325146	694		-,											
	SPA B3	_a	3479662	5324841	717	1521	0,17	51	11	26	26	81	61	0,1	7,5	0,0	7,5	0,0
		b	3479679	5324757	724		,							•	•	,	,	•
		_ _a	3479792	5324863	718	1719	0,16	53	11	25	27	88						
		_b	3479783	5324927	717		-, -											
		_ _a	3479889	5324670	749	1344	0,08	74	11	35	23	122	50	0,0	5,5	0,0	5,5	0,0
		_b	3479904	5324627	765		,							•	,	,	,	•
Spaichingen-	STA_B1	_a	3479449	5325564	677	1534	0,11	58	14	32	30	90	52	0,1	2,8	0,0	2,8	0,0
Staufelberg		_b	3479382	5325563	688													
(STA)	STA_B2	_ _a	3478723	5325348	707	2026	0,21	54	16	24	27	120	212	0,2	3,9	0,1	3,9	0,4
, ,		_b	3478785	5325288	706													
	STA_B3	_ _a	3479071	5325623	691	1815	0,16	53	14	39	31	112						
	_	b	3478997	5325585	694													
		_a	3479269	5325137	696	1985	0,18	55	13	25	31	117	128	0,1	3,6	0,0	3,6	0,0
	_	_b	3479302	5325185	694													
	STA_B5	_a	3478618	5325533	700	1840	0,13	55	16	29	21	120	139	0,5	3,5	0,1	3,4	0,6
	-	_b	3478700	5325560	698													
Gunningen	GUN_B1	_a	3476874	5323491	740	1408	0,06	27	10	17	30	53	87	0,2	1,9	0,0	1,8	0,1
(GUN)	_	_b	3476910	5323565	745													
	GUN_TP2 _	_a	3476709	5323396	733	1816	0,07	30	19	18	32	70						
	_	_b	3476789	5323375	733													
		_a	3476559	5323647	742	1630	0,08	41	14	23	24	64	115	0,1	1,8	0,0	1,8	0,0
	_	_b	3476516	5323574	739													
		_a	3476119	5323868	745	1513	0,08	48	13	20	24	65						
	<u>-</u>	_b	3476069	5323798	739													
	GUN B3	а	3476095	5322992	767	1206	0,04	22	10	17	18	52	65	0,1	1,7	0,0	1,7	0,0
	_	_b	3476122	5323059	761													
	GUN_B4	_a	3476260	5323051	756	1194	0,20	36	14	22	32	130	212	5,4	3,4	0,7	2,6	6,1
	_	_b	3476216	5322992	762													
	GUN_B5	_a	3476773	5323104	739	1667	0,06	28	10	36	25	90	200	0,1	1,2	0,0	1,2	0,0
	_	_b	3476727	5323043	744													
	GUN_B6	_a	3476811	5323108	737	1821	0,13	20	11	15	25	55						
	-	_b	3476871	5323177	736													

Ort	Probennam	е	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO ₃	TC	TIC	TOC	Carb
					m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
	GUN_TP4	_a	3476927	5323228	730	1792	0,21	24	13	16	27	55	142	0,1	4,1	0,0	4,1	0,0
		_b	3476917	5323269	731													
	GUN_B7	_a	3476471	5323271	740	1934	0,14	36	12	17	32	68						
		_b	3476526	5323337	735													
	GUN_B8	_a	3476232	5323356	746	1652	0,09	23	21	15	29	67	74	0,0	1,9	0,0	1,9	0,0
		_b	3476280	5323416														
Oberschwaben																		
Fleisch-	FLE_B1	_a	3536450	5303941	646	1269	0,14	26	14	19	14	74	554	1,3	2,0	0,2	1,7	2,0
wangen		_b	3536391	5303878	653													
(FLE)	FLE_TP2	_a	3536670	5303697	645	1244	0,20	22	12	14	16	66						
		_b	3536686	5303611	645													
	FLE_B2	_a	3536786	5304022	661	997	0,22	29	16	19	14	74	144	3,5	2,4	0,5	1,9	4,5
		_b	3536857	5304058	665													
	FLE_B3	_a	3537075	5303495	656	1026	0,14	22	13	14	13	54	340	0,3	1,3	0,0	1,3	0,4
		_b	3537164	5303437	664													
	FLE_TP3	_a	3537030	5302804	662	2081	0,35	26	16	10	26	46	322	0,2	23,9	0,0	23,9	0,3
		_b	3536965	5302845	658													
	FLE_B4	_a	3535588	5301775	681	1219	0,13	19	13	13	13	48						
		_b	3535598	5301855	676													
	FLE_B5	_a	3535639	5302058	675	1797	0,22	29	11	16	12	67						
		_b	3535563	5302073	673													
	FLE_B6	_a	3535793	5302307	678	1149	0,18	26	10	16	13	46	434	0,8	1,4	0,1	1,2	1,0
		_b	3535800	5302382	676													
	FLE_B7	_a	3535762	5301825	678	1015	0,17	22	10	12	13	44	224	0,6	1,4	0,1	1,4	0,5
		_b	3535845	5301758	676													
	FLE_B8	_a	3536140	5303220	664	2479	0,61	20	15	11	21	56						
		_b	3536213	5303257	660													
	FLE_B9	_a	3536942	5303257	660	964	0,45	26	13	16	14	38	322	0,1	1,7	0,0	1,7	0,0
		_b	3536856	5303246	654													
Mittelurbach	MIT_B1	_a	3559209	5301470	656	1484	0,12	41	15	20	15	75	191	0,0	1,9	0,0	1,9	0,0
(MIT)		_b	3559196	5301317	660													
	MIT_B2	_a	3559026	5302004	651	902	0,12	44	13	21	15	44	53	0,0	1,4	0,0	1,4	0,0
		_b	3559043	5301892	651													
	MIT_B3	_a	3558608	5303999	648	1134	0,13	41	14	19	19	66						
	_	_b	3558695	5303867	648													
	MIT_B4	_a	3557903	5303566	636	1029	0,26	31	9	17	13	46						
	_	_b	3557877	5303685	639													
	MIT_B5	_ _a	3557994	5304394	639	1061	0,19	61	12	37	20	80	76	0,2	1,4	0,0	1,4	0,0
	_	_b	3557974	5304471	641													
		_																

Ort	Probenname		Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P_2O_5	CaCO ₃	TC	TIC	TOC	Carb
					m ü.NN	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
	MIT_B6	_a	3557728	5304065	632	1158	0,20	44	10	26	21	73						
		_b	3557766	5303999	635													
	MIT_B7	_a	3557749	5304258	634	1391	0,19	46	9	25	19	70	111	0,0	1,6	0,0	1,6	0,0
		_b	3557703	5304326	633													
	MIT_B8	_a	3558080	5303836	638	1713	0,27	40	13	24	17	53	336	0,3	2,0	0,1	2,0	0,4
		_b	3558143	5303898	643													
	MIT_B9	_a	3557449	5304843	637	1959	0,23	27	14	20	19	65	642	0,3	2,6	0,0	2,5	0,1
		_b	3557366	5304973	630													
	MIT_B10	_a	3557523	5305122	631	1139	0,18	63	10	32	17	72						
		_b	3557556	5305019	636													
	MIT_B11	_a	3557607	5305354	626	1400	0,22	23	12	17	20	59						
		_b	3557493	5305232	631													
	MIT_B12	_a	3557213	5305108	634	1576	0,25	32	15	25	22	66	186	0,0	1,8	0,0	1,8	0,0
		_b	3557148	5305057	641													
	MIT_B13	_a	3557573	5305669	631	1553	0,15	43	8	21	23	66	178	0,0	2,3	0,0	2,3	0,0
	_	_b	3557557	5305799	623													

Sedimente

Ort	Probenname	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO ₃	TC		TOC	Carb
				m	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
Kraichgau	EIC_S_ZU_0-20	3482950	5454835	181	1350	0,24	44	15	32	20	62						
Eichters-	EIC_S_ZU_20-40				1381	0,24	41	15	31	21	54						
heim	EIC_S_ZU_40-60	2402050	E4E4040	181	1273 903	0,23	40	16 14	31 24	21 23	50 57						
(EIC)	EIC_S_MI1_0-20 EIC S MI1 20-40	3483050	5454810	101	903 787	0,22 0,16	31 34	13	24 26	23 21	57 45						
	EIC_S_MI1_40-60				974	0,18	35	14	26	21	49						
	EIC S MI2 0-20	3483002	5454882	179	962	0,10	30	12	23	19	51	112	11,6	3,8	1,3	2,5	10,6
	EIC S MI2 20-40	0100002	0101002	170	839	0,25	29	12	22	19	47	112	11,0	0,0	1,0	2,0	10,0
	EIC_S_MI2_40-60				590	0,17	31	10	23	14	41						
	EIC S AB 0-20	3483057	5454852	175	1124	0,45	33	14	26	21	56	79	19,2	4,3	1,0	3,4	8,0
	EIC_S_AB_20-40				1053	0,26	31	12	23	22	59		,	,	,	,	•
	EIC_S_AB_40-60				790	0,24	29	11	21	25	52						
Grombach	GRO_S_Ablauf	3500733	5454656	-	1035	0,12	33	17	27	20	65	294	0,9	1,2	0,0	1,2	0,0
(GRO)	GRO_S_Tiefpunkt	3500765	5454652	-	1047	0,19	43	20	34	23	73	278	0,7	1,3	0,1	1,2	0,9
	GRO_S_Ueberlauf	3500754	5454631	-	939	0,19	45	17	32	20	64						
	GRO_S_Einl_bachnah	3500938	5454803 5454707	-	787 724	0,20	31	12 11	24 22	16	47 51						
	GRO_S_Einl_bachfern GRO S Ablauf2	3500945	5454797	-	724 1021	0,14 0,17	31 43	11 15	33	15 21	64						
	GRO_S_ADIAUIZ				1021	0,17	43	15	33	۷ ۱	04						
Babstadt	BAB S1	3503966	5456387	_	1104	0,17	62	18	50	23	77	296	1,9	1,7	0,3	1,4	2,3
(BAB)	BAB S2	3503966	5456387	_	1016	0,18	34	16	32	20	72		.,-	- , -	-,-	.,.	_,-
Hohenlohe	_					•											
Neuenstein	NEU_S_VO_0-20	3542998	5453812	305	1212	0,18	51	22	33	22	101	302	0,6	2,8	0,1	2,8	0,7
(NEU)	NEU_S_VO_20-40				936												
	NEU_S_VO_40-60				936												
	NEU_S_MI_0-20	3543176	5453828	306	1320	0,19	49	20	29	24	90						
	NEU_S_MI_20-40				795												
	NEU_S_MI_40-60	2542404	E4E2002	205	591	0,19	20	40	26	21	71						
	NEU_S_HI_0-20 NEU S HI 20-40	3543494	5453883	305	846 783	0,19	38	16	20	21	/ 1						
	NEU_S_HI_40-60				515												
	NEO_3_III_ 4 0-00				313												
Bernds-	BER S VO KO 0-20	3556004	5461331	402	1116	0,42	44	23	38	24	98						
hausen	BER S VO KO 20-40				1127	- ,											
(BER)	BER_S_VO_KO_40-60				1932												
	BER_S_VO_WI_0-20	3555989	5461339	403	1234	0,46	44	21	32	26	115	145	0,1	2,8	0,0	2,8	0,0
	BER_S_VO_WI_20-40				1093												
	BER_S_VO_WI_40-60				712												
	BER_S_MI_0-20	3556083	5461285	408	1190	1,27	59	20	49	29	199						

Ort	Probenname	Hochwert	Rechtswert	Höhe m	P _{ges} [mg/kg]	Cd [mg/kg]	Cr [mg/kg]	Cu [mg/kg]	Ni [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	P ₂ O ₅ [mg/kg]	CaCO ₃	TC [%]	TIC [%]	TOC	Carb [%]
	BER_S_MI_20-40 BER_S_MI_40-60 BER_S_HI_0-20 BER_S_HI_20-40 BER_S_HI_40-60	3556136	5461220	408	978 1145 913 511 524	0,32	71	17	50	18	82	[mg/kg]	[70]	_ [70]	[/0]	[70]	[70]
Hermut- hausen (HER)	HER_S_VO_0-20 HER_S_VO_20-40	3554808	5464454	414	1244 844 722	0,20	45	19	30	22	70	133	0,2				
(NEK)	HER_S_VO_40-60 HER_S_HI_0-20 HER_S_HI_20-40 HER_S_HI_40-60	3554840	5464487	414	1189 547 588	0,15	45	15	29	21	66						
Seidel- klingen (SEI)	SEI_S_VO_Feld_0-15 SEI_S_VO_Wald_0-15 SEI_S_VO_20-30 SEI_S_VO_40+	3554763 3554778	5467355 5467363	377 377	1216 1274 985 1092	0,23 0,24	40 38	28 27	34 34	18 20	94 94	216	0,2	0,0	0,0	0,0	0,0
	SEI_S_MI_0-15 SEI_S_MI_20-30 SEI_S_MI_40+				1274 1113 1019	0,24	38	27	34	20	94						
	SEI_S_HI_0-15 SEI_S_HI_20-30 SEI_S_HI_40+	3554846	5467298	380	1123 690 714	0,35	35	21	33	20	103						
Albvorland Haigerloch- Weildorf	HAI_S_VO_0-20 HAI_S_VO_20-40 HAI_S_VO_40-60	3483053	5359014	514	1392 1337 1966	0,08	29	28	45	20	79	35	3,3	2,2	0,5	1,7	4,2
(HAI)	HAI_S_HI_0-20 HAI_S_HI_20-40 HAI_S_HI_40-60	3483018	5359001	515	1171 1194 1814	0,13	49	22	42	21	69						
Grossel- fingen (GRS)	GRS_S_VO_0-20 GRS_S_VO_20-40 GRS_S_VO_40-60	3492133	5355057	521	818 1092 1047	0,25	73	34	66	25	119	97	4,0	4,9	0,6	4,3	4,9
(Cito)	GRS_S_HI_0-20 GRS_S_HI_20-40 GRS_S_HI_40-60	3492169	5355078	522	1111 816 667	0,28	31	18	21	17	56						
Spaich- ingen (SPA)	SPA_S_VO_0-20 SPA_S_VO_20-40 SPA_S_VO_40-60	3479982	5325741	677	1999 2168 1761	0,19 0,19 0,16	77 82 80	24 16 16	44 44 42	32 31 28	178 116 111	105	6,9	2,7	8,0	1,9	6,5

Ort	Probenname	Hochwert	Rechtswert	Höhe	P _{ges}	Cd	Cr	Cu	Ni	Pb	Zn	P ₂ O ₅	CaCO₃	TC	TIC	TOC	Carb
				m	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[%]	[%]	[%]	[%]	[%]
	SPA_S_MI_0-20 SPA_S_MI_20-40 SPA_S_MI_40-60	3479936	5325726	680	2571 2246 2703	0,19	76	23	40	46	156	61	1,1	2,7	0,3	2,4	2,2
	SPA_S_HI_0-20 SPA_S_HI_20-40 SPA_S_HI_40-60	3479854	5325678	677	1651 2248 1730	0,17	77	21	42	29	135						
Spaich- ingen- Staufelberg					1241	0,09	32	23	38	29	122	92	2,6		0,3	2,6	2,5
(STA)	STA_S_Schwimmbad STA_S_MI_20-40 STA_S_MI_40-60 STA_S_HI_0-20 STA_S_HI_20-40 STA_S_HI_40-60				1309	0,07	35	23	34	28	106	78	0,8	2,9	0,1	2,8	1,0
Gunningen (GUN)	GUN_S_VO_0-20 GUN_S_VO_20-40 GUN_S_VO_40-60	3476986	5323279	736	1339 1387 1230	0,03	61	16	39	21	94	69	6,0	2,5	0,8	1,7	6,3
	GUN_S_HI_0-20 GUN_S_HI_20-40 GUN_S_HI_40-60	3476970	5323290	734	1431 1723	0,09	69	20	42	25	114						
Ober- schwaben Fleisch-	FLE_S_VO_0-20 FLE_S_VO_20-40 FLE_S_VO_40-60	3536535	5304154	638	920 658 603	0,26	34	15	22	15	52	55	0,7	3,4	0,1	3,3	1,2
wangen (FLE)	FLE_S_re.Ufer FLE_S_li.Ufer FLE_S_h.Pflnz	3536488	5304205	640	590 623 939												
	FLE_S_HI_0-20 FLE_S_HI_20-40 FLE_S_HI_40-60	3536579	5304068	640	1117 673 575	0,28	21	11	19	26	31						
Mittel- urbach (MIT)	MIT_S_VO_0-20 MIT_S_VO_20-40 MIT_S_VO_40-60	3557546	5306018	624	732 774 617	0,14	48	17	32	15	63	39	6,3	2,8	0,9	1,9	7,3
` '	MIT_S_MI_0-20 MIT_S_MI_20-40 MIT_S_MI_40-60	3557467	5305919	625	1096 1348 936	0,21	31	12	20	21	67						
	MIT_S_HI_0-20	3557400	5305817	626	1342	0,30	45	17	28	21	74						

Hochwasser

Ort	Probenname	P_{ges}	Cd	Cr	Cu	Ni	Pb	Zn	AFS	GV	P_{filtr}
		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/l]	[%]	[mg/l]
Grombach (GRO)	GRO_HW_3	731	0,22	35	15	27	31	60			-
	GRO_HW_3_Ü	1							79	38	0,43
	INS_HW_1	2219	0,44	69	36	62	54	152			
	INS_HW_1_Ü	1							226	23	0,32
	GRO_HW_4	561	0,11	24	12	19	22	40			
	GRO_HW_4_Ü	1							194	16	0,41
	GRO_HW_5		0,17	32	19	32/31	19	64/62	46860	5	0,13
	GRO_HW_5_Ü										
Babstadt (BAB)	MUE_HW_1	2813	0,41	61	30	47	63	191			
	MUE_HW_1_Ü	0							33	28	0,31
	BAB_HW_1	751	0,26	22	16	22	17	80			
	BAB_HW_1_Ü	1							14	6	0,56
	MUE_HW_2	822	0,29	37	16	26	33	90			
	MUE_HW_2_Ü	0							60	14	0,29
	BAB_HW_2	1865									
	BAB_HW_2_Ü	0							74	17	0,31
	BAB_HW_3										
	BAB_HW_3_Ü										
Neuenstein (NEU)	NEU_HW_1	1232	0,17	22	26	21	24	140			
	NEU_HW_1_Ü	0							6	72	0,08
	NEU_HW_2	1216	0,61	36	33	28	35	130			
	NEU_HW_2_Ü	1							33	13	0,47
	NEU_HW_3	0	0,27	21	19	<33	<4	1	18300	7	0,25
	NEU_HW_3_Ü	0							12	0	0,17
	NEU_HW_4	947	0,15	27	17	19	17	98			
	NEU_HW_4_Ü	0	0,27	21	19	<33	<4	1	18300	7	0,25
	NEU_HW_5										
	NEU_HW_5_Ü										
	NEU_HW_7	14	0,18	32	19	32/28	22	88	11340	7	0,44
	NEU_HW_7_Ü	0	0,00	0	7	0	0		8	20	
	NEU_HW_9	47	0,12	23	13	23/19	17		33650	5	0,18

Ort	Probenname	P_{ges}	Cd	Cr	Cu	Ni	Pb	Zn	AFS	GV	P_{filtr}
		[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/l]	[%]	[mg/l]
	NEU_HW_9_Ü	0	0,00	0	6	0	0		6	27	_
	NEU_HW_11	53	0,14	25	18	25/23	19		40140	5	0,17
	NEU_HW_11_Ü	0	0,00	0	7	0	2		29300	12	0,43
	NEU_HW_12	32	0,13	22	15	22/21	16		26280	5	0,20
	NEU_HW_12_Ü	0	0,00	6	7	7	0		42300	12	0,33
	NEU_HW_13										
	NEU_HW_13_Ü	0							14	20	0,30
	NEU_HW_14										
	NEU_HW_14_Ü	0									0,36
Berndshausen (BER)	BER_HW_1	2391	0,29	65	32	63	29	119			
(,	BER_HW_1_Ü	1	-,						47	7	0,48
Hermuthausen (HER)	HER_HW_1	1121	0,22	19	19	23	21	60			
,	HER_HW_1_Ü	0							28	7	0,36
Seidelklingen (SEI)	SEI HW 1	808	0,26	16	19	22	19	60			
G ()	SEI_HW_1_Ü	0	,						164	8	0,23
Albvorland											·
Haigerloch-Weildorf (HAI)	HAI HW 1	1677	0,54	18	23	27	22	90			
,	HAI_HW_1_Ü	0	·						7	24	0,34
Grosselfingen (GRS)	GRS_HW_1	1306	0,32	46	26	46	26	120			
Grosseningen (Gree)	GRS_HW_1_Ü	0	0,02	40	20	40	20	120	12	17	0,16
EL : 1 (EL E)	EL E . 1.104. 4	4400	0.44	40	00	0.4	0.5	100			
Fleischwangen (FLE)	FLE_HW_1	1183	0,41	18	33	24	25	160	0	0	0.47
	FLE_HW_1_Ü	0							0	0	0,47
Mittelurbach (MIT)	MIT_HW_1	1813	1,02	55	33	37	45	205			
,	MIT_HW_1_Ü	0	,-			-	-		2	71	0,12

HRB Eichtersheim

HRB Grombach



<u>zurück</u>

HRB Babstadt

HRB Neuenstein

zurück

NEU_B9_a NEU_B10_a NEU_B11_a

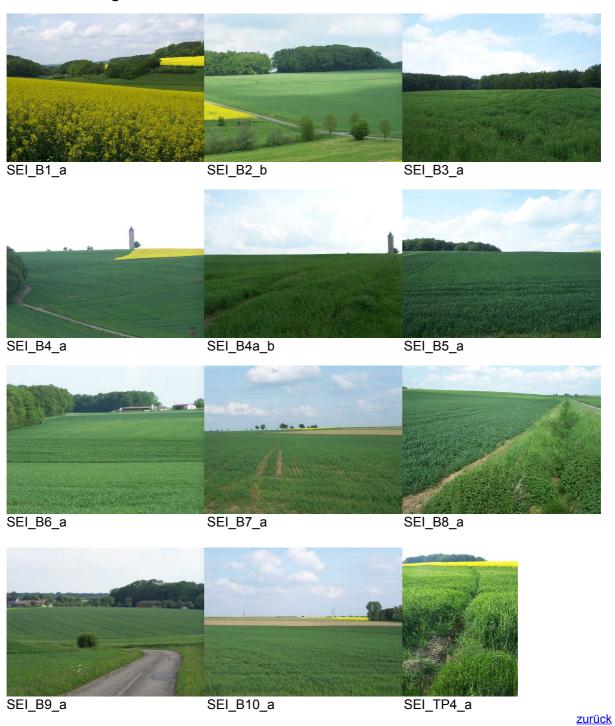
zurück

zurück

HRB Berndshausen

Mary Control of the C

BER_B6_a


HRB Hermuthausen

HER_TP3_a

HRB Seidelklingen

HRB Haigerloch

HAI_B7_b

HRB Grosselfingen

GRS_B8_b

zurück

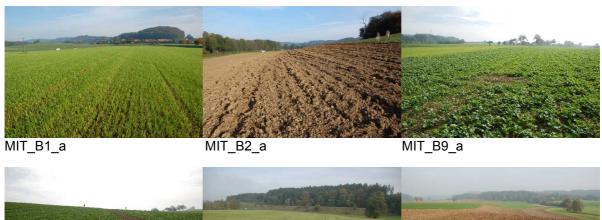
HRB Spaichingen

HRB Staufelberg

HRB Gunningen

HRB Fleischwangen

FLE_B4_a FLE_B5_a FLE_B6_b


<u>zurück</u>

FLE_B8_a

HRB Mittelurbach

<u>zurück</u>

<u>zurück</u>

F Oberbodenauswertungen

Tab. F.1: Chemische Charakterisierung der Oberböden in den unterschiedlichen Einzugsgebieten.

Kraichgau Eichtersheim (EIC)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	12,4	11,5	6,1	2,1	19,0	6
TOC [%]	1,5	1,8	1,0	1,0	3,5	6
Pges [mg/kg]	998	1053	135	891	1246	10
P ₂ O ₅ [mg/100g]	18	20	10	9	35	6
Cd [mg/kg]	0,22	0,22	0,03	0,15	0,28	10
Cr [mg/kg]	27	28	6	21	39	10
Cu [mg/kg]	14	13	2	9	15	10
Ni [mg/kg]	23	24	3	20	30	10
Pb [mg/kg]	17	17	2	13	20	10
Zn [mg/kg]	48	49	7	37	63	10

Grombach (GRO)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,3	2,0	3,7	0,0	7,6	4
TOC [%]	1,1	1,1	0,1	1,0	1,2	4
Pges [mg/kg]	922	914	157	673	1211	9
P ₂ O ₅ [mg/100g]	13	15	7	7	25	4
Cd [mg/kg]	0,18	0,18	0,03	0,13	0,22	9
Cr [mg/kg]	43	40	9	21	51	9
Cu [mg/kg]	17	16	4	11	23	9
Ni [mg/kg]	33	34	10	17	51	9
Pb [mg/kg]	21	24	5	18	31	9
Zn [mg/kg]	55	53	6	43	62	9

Babstadt (BAB)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,4	1,0	1,1	0,4	2,3	3
TOC [%]	1,0	1,0	0,1	0,9	1,2	3
Pges [mg/kg]	736	751	57	681	830	6
P ₂ O ₅ [mg/100g]	11	10	4	6	14	3
Cd [mg/kg]	0,14	0,13	0,02	0,11	0,14	6
Cr [mg/kg]	57	63	26	38	100	6
Cu [mg/kg]	17	17	4	12	24	6
Ni [mg/kg]	40	41	13	26	57	6
Pb [mg/kg]	19	20	3	16	25	6
Zn [mg/kg]	47	50	9	43	68	6

Hohenlohe Neuenstein (NEU)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	1,7	2,1	2,2	0,1	7,0	14
TOC [%]	1,6	1,7	0,6	1,0	3,1	14
Pges [mg/kg]	1258	1311	317	882	2034	16
P ₂ O ₅ [mg/100g]	32	37	21	10	83	14
Cd [mg/kg]	0,19	0,22	0,08	0,15	0,38	16
Cr [mg/kg]	31	35	13	20	54	16
Cu [mg/kg]	17	18	5	11	28	16
Ni [mg/kg]	27	27	7	16	40	16
Pb [mg/kg]	27	32	20	18	99	16
Zn [mg/kg]	62	66	36	30	190	16

Berndshausen (BER)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,1	0,1	0,1	0,0	0,2	8
TOC [%]	1,5	1,3	0,9	0,0	2,4	8
Pges [mg/kg]	1135	1117	172	894	1443	11
P ₂ O ₅ [mg/100g]	10	9	5	0	14	8
Cd [mg/kg]	0,21	0,23	0,04	0,17	0,30	11
Cr [mg/kg]	29	30	5	22	42	11
Cu [mg/kg]	14	15	3	12	19	11
Ni [mg/kg]	22	24	7	16	40	11
Pb [mg/kg]	27	128	236	21	819	11
Zn [mg/kg]	63	64	8	53	77	11

Hermuthausen (HER)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,1	0,2	0,3	0,0	0,7	4
TOC [%]	2,0	2,1	0,4	1,7	2,5	4
Pges [mg/kg]	1477	1495	242	1037	1747	7
P ₂ O ₅ [mg/100g]	18	20	11	11	35	4
Cd [mg/kg]	0,19	0,19	0,02	0,17	0,22	7
Cr [mg/kg]	33	34	8	22	47	7
Cu [mg/kg]	15	15	4	11	21	7
Ni [mg/kg]	25	25	9	15	38	7
Pb [mg/kg]	23	23	2	22	27	7
Zn [mg/kg]	56	62	14	50	87	7

Seidelklingen (SEI)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,2	0,7	0,9	0,0	2,5	7
TOC [%]	1,9	1,9	0,3	1,4	2,2	7
Pges [mg/kg]	1107	1109	379	310	1677	14
P ₂ O ₅ [mg/100g]	16	18	8	8	32	7
Cd [mg/kg]	0,24	0,31	0,16	0,17	0,67	14
Cr [mg/kg]	28	31	9	22	52	14
Cu [mg/kg]	19	20	8	8	39	14
Ni [mg/kg]	34	35	11	16	56	14
Pb [mg/kg]	26	32	24	21	114	14
Zn [mg/kg]	69	67	27	31	129	14

Albvorland Haigerloch-Weildorf (HAI)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,1	1,8	3,7	0,0	8,4	5
TOC [%]	1,7	2,2	1,7	0,0	4,4	5
Pges [mg/kg]	1071	1148	298	724	1534	8
P ₂ O ₅ [mg/100g]	20	16	11	0	28	5
Cd [mg/kg]	0,19	0,34	0,38	0,08	1,26	8
Cr [mg/kg]	22	21	2	19	24	8
Cu [mg/kg]	14	15	3	12	21	8
Ni [mg/kg]	24	25	6	18	35	8
Pb [mg/kg]	20	20	3	16	25	8
Zn [mg/kg]	50	50	3	46	55	8

Grosselfingen (GRS)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	3,0	6,6	9,5	0,1	24,3	6
TOC [%]	3,6	3,9	1,7	2,2	6,9	6
Pges [mg/kg]	1377	1325	141	1052	1466	10
P ₂ O ₅ [mg/100g]	4	6	5	4	17	6

Cd [mg/kg]	0,21	0,21	0,08	0,09	0,35	10
Cr [mg/kg]	31	31	5	22	39	10
Cu [mg/kg]	28	29	7	19	44	10
Ni [mg/kg]	50	58	30	25	104	10
Pb [mg/kg]	31	29	18	9	70	10
Zn [mg/kg]	94	95	31	55	134	10

Spaichingen (SPA)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,1	0,1	0,1	0,0	0,1	3
TOC [%]	7,5	7,5	2,0	5,5	9,6	3
Pges [mg/kg]	1580	1566	145	1344	1719	5
P ₂ O ₅ [mg/100g]	6	9	5	5	15	3
Cd [mg/kg]	0,12	0,13	0,04	0,08	0,17	5
Cr [mg/kg]	53	55	13	38	74	5
Cu [mg/kg]	11	13	3	11	17	5
Ni [mg/kg]	26	29	7	21	39	5
Pb [mg/kg]	27	28	4	23	35	5
Zn [mg/kg]	88	93	19	74	122	5

Staufelberg Parkplatz (STA)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]						
TOC [%]						
Pges [mg/kg]						
P ₂ O ₅ [mg/100g]						
Cd [mg/kg]						
Cr [mg/kg]						
Cu [mg/kg]						
Ni [mg/kg]						
Pb [mg/kg]						
Zn [mg/kg]						

Staufelberg Schwimmbad (STA)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	<u> </u>					
TOC [%]						
Pges [mg/kg]						
P ₂ O ₅ [mg/100g]						
Cd [mg/kg]						
Cr [mg/kg]						
Cu [mg/kg]						
Ni [mg/kg]						
Pb [mg/kg]						
Zn [mg/kg]						

Gunningen (GUN)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,1	0,7	1,8	0,0	5,4	9
TOC [%]	1,8	1,7	1,3	0,0	4,1	9
Pges [mg/kg]	1652	1603	248	1194	1934	11
P ₂ O ₅ [mg/100g]	9	10	8	0	21	9
Cd [mg/kg]	0,08	0,11	0,06	0,04	0,21	11
Cr [mg/kg]	28	30	9	20	48	11
Cu [mg/kg]	13	13	4	10	21	11
Ni [mg/kg]	17	20	6	15	36	11
Pb [mg/kg]	27	27	4	18	32	11
Zn [mg/kg]	65	70	23	52	130	11

Oberschwaben Fleischwangen (FLE)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,6	1,0	1,2	0,1	3,5	7
TOC [%]	1,7	4,7	8,4	1,2	23,9	7
Pges [mg/kg]	1219	1385	506	964	2479	11
P ₂ O ₅ [mg/100g]	32	33	13	14	55	7
Cd [mg/kg]	0,20	0,26	0,15	0,13	0,61	11
Cr [mg/kg]	26	24	4	19	29	11
Cu [mg/kg]	13	13	2	10	16	11
Ni [mg/kg]	14	14	3	10	19	11
Pb [mg/kg]	14	15	4	12	26	11
Zn [mg/kg]	54	56	13	38	74	11

Mittelurbach (MIT)

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,0	0,1	0,1	0,0	0,3	8
TOC [%]	1,8	1,9	0,4	1,4	2,5	8
Pges [mg/kg]	1391	1346	307	902	1959	13
P ₂ O ₅ [mg/100g]	18	22	19	5	64	8
Cd [mg/kg]	0,19	0,19	0,05	0,12	0,27	13
Cr [mg/kg]	41	41	12	23	63	13
Cu [mg/kg]	12	12	2	8	15	13
Ni [mg/kg]	21	23	6	17	37	13
Pb [mg/kg]	19	18	3	13	23	13
Zn [mg/kg]	66	64	11	44	80	13

Kraichgau 3 Standorte

Bodenproben Median Mittelwert STABW MIN MAX Anzahl 19,0 Carbonat [%] 0,4 4,8 2,5 0,0 13 **TOC** [%] 1,1 1,3 0,5 0,9 3,5 13 Pges [mg/kg] 922 906 52 673 1246 25 P₂O₅ [mg/100g] 13 15 3 35 13 6 Cd [mg/kg] 0,18 0,17 0,01 0,11 0,28 25 Cr [mg/kg] 44 100 25 43 11 21 Cu [mg/kg] 17 15 1 9 24 25 Ni [mg/kg] 33 33 5 17 57 25 Pb [mg/kg] 20 1 25 19 13 31 Zn [mg/kg] 48 51 1 37 25 68

Hohenlohe 4 Standorte

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,1	0,8	1,0	0,0	7,0	33
TOC [%]	1,8	1,8	0,3	0,0	3,1	33
Pges [mg/kg]	1197	1258	90	310	2034	48
P ₂ O ₅ [mg/100g]	17	21	7	0	83	33
Cd [mg/kg]	0,20	0,24	0,06	0,15	0,67	48
Cr [mg/kg]	30	32	3	20	54	48
Cu [mg/kg]	16	17	3	8	39	48
Ni [mg/kg]	26	28	2	15	56	48
Pb [mg/kg]	26	54	111	18	819	48
Zn [mg/kg]	63	65	13	30	190	48

Albvorland 4 Standorte

Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,1	2,3	4,1	0,0	24,3	23
TOC [%]	2,7	3,8	0,3	0,0	9,6	23
Pges [mg/kg]	1479	1410	78	724	1934	34
P ₂ O ₅ [mg/100g]	7	10	3	0	28	23
Cd [mg/kg]	0,15	0,19	0,16	0,04	1,26	34
Cr [mg/kg]	30	34	5	19	74	34
Cu [mg/kg]	13	18	2	10	44	34

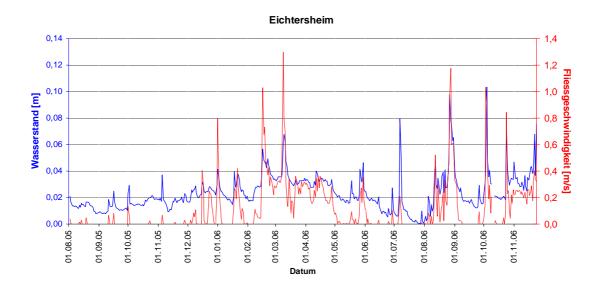
Ni [mg/kg]	25	33	12	15	104	34
Pb [mg/kg]	27	26	7	9	70	34
Zn [mg/kg]	76	77	12	46	134	34

Oberschwaben

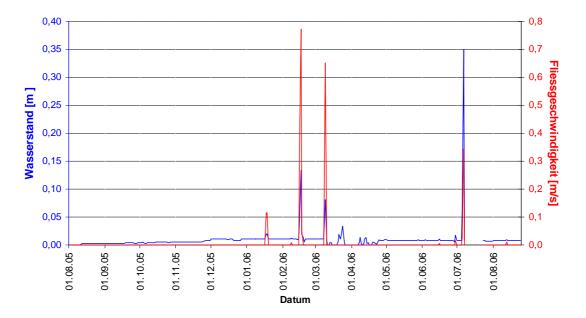
2 Standorte

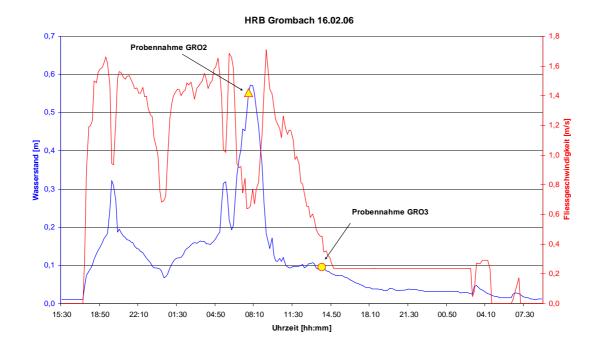
Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,3	0,5	0,8	0,0	3,5	15
TOC [%]	1,8	3,3	5,7	1,2	23,9	15
Pges [mg/kg]	1305	1366	141	902	2479	24
P ₂ O ₅ [mg/100g]	25	28	4	5	64	15
Cd [mg/kg]	0,20	0,22	0,07	0,12	0,61	24
Cr [mg/kg]	33	33	6	19	63	24
Cu [mg/kg]	13	13	0	8	16	24
Ni [mg/kg]	18	19	2	10	37	24
Pb [mg/kg]	16	17	1	12	26	24
Zn [mg/kg]	60	60	1	38	80	24

Baden-Württemberg (alle Standorte)

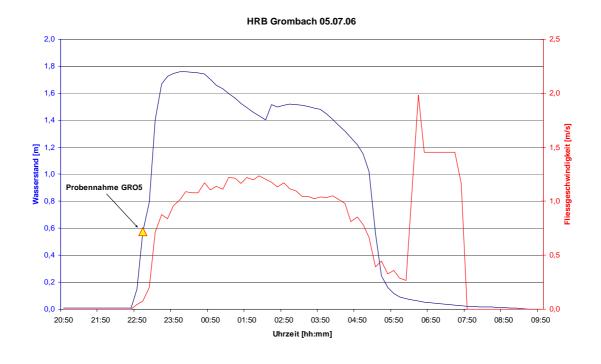

13 Standorte

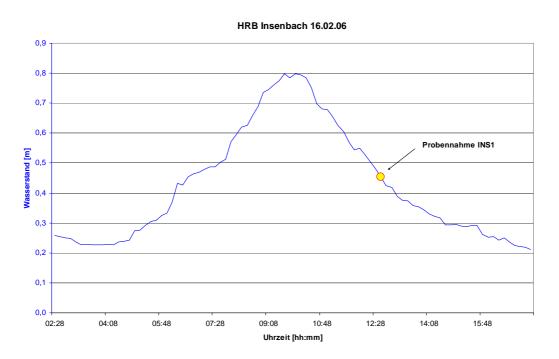
Bodenproben	Median	Mittelwert	STABW	MIN	MAX	Anzahl
Carbonat [%]	0,2	2,1	1,5	0,0	24,3	84
TOC [%]	1,8	2,5	2,7	0,0	23,9	84
Pges [mg/kg]	1251	1235	37	310	2479	131
P ₂ O ₅ [mg/100g]	15	19	2	0	83	84
Cd [mg/kg]	0,19	0,21	0,06	0,04	1,26	131
Cr [mg/kg]	32	36	3	19	100	131
Cu [mg/kg]	15	16	1	8	44	131
Ni [mg/kg]	25	28	5	10	104	131
Pb [mg/kg]	23	29	54	9	819	131
Zn [mg/kg]	61	63	6	30	190	131

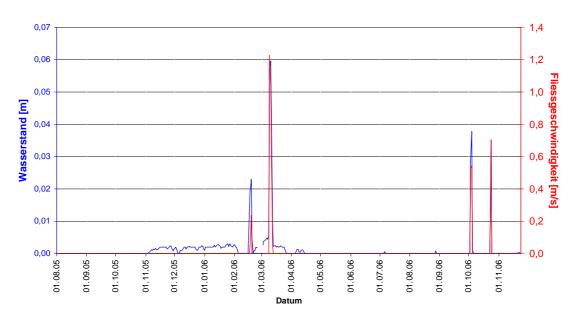

G Hochwasserbeprobungen und Hochwasserabflüsse

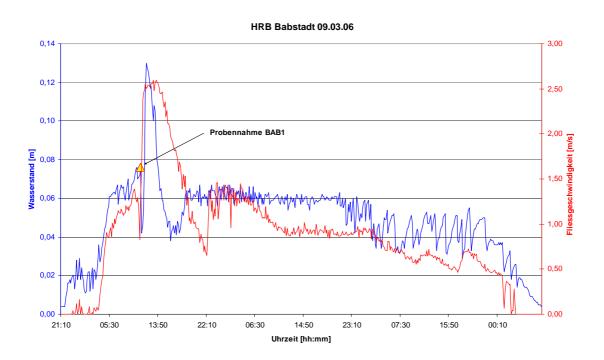

Bodenregion	Ort	HW-Name	Datum	Gesamtvol. [I]
Kraichgau	Grombach	GRO1	7.7.05 0:00	26
Kraichgau	Grombach	GRO2	16.2.06 7:40	900
Kraichgau	Grombach	GRO3	16.2.06 13:50	480
Kraichgau	Grombach	GRO4	9.3.06 10:30	330
Kraichgau	Grombach	GRO5	5.7.06 23:00	350
Kraichgau	Insenbach	INS1	16.2.06 12:30	290
Kraichgau	<u>Babstadt</u>	BAB1	9.3.06 10:50	680
Kraichgau	Babstadt	BAB2	3.10.06 10:22	940
Kraichgau	Babstadt	BAB3	24.10.06 2:20	950
Kraichgau	Babstadt	BAB4	28.1.07 21:20	1000
Kraichgau	Babstadt	BAB5	Keine Messwerte	950
Kraichgau	Mühlbach	MUE1	16.2.06 15:30	290
Kraichgau	Mühlbach	MUE2	9.3.06 11:15	290
Hohenlohe	Neuenstein	NEU1	16.2.06 2:25	120
Hohenlohe	Neuenstein	NEU2	16.2.06 17:00	490
Hohenlohe	Neuenstein	NEU3	9.3.06 3:55	460
Hohenlohe	Neuenstein	NEU4	9.3.06 12:15	290
Hohenlohe	Neuenstein	NEU5	28.5.06 7:20	450
Hohenlohe	Neuenstein	NEU6	26.5.06 23:00	24
Hohenlohe	Neuenstein	NEU7	28.6.06 12:30	470
Hohenlohe	Neuenstein	NEU8	29.6.06 7:30	5
Hohenlohe	Neuenstein	NEU9	29.6.06 7:30	280
Hohenlohe	Neuenstein	NEU10	31.7.06 17:55	2
Hohenlohe	Neuenstein	NEU11	31.7.06 18:00	370
Hohenlohe	Neuenstein	NEU12	27.8.06 21:40	270
Hohenlohe	Neuenstein	NEU13	3.10.06 15:40	280
Hohenlohe	Neuenstein	<u>NEU14</u>	24.10.06 3:50	485
Hohenlohe	Neuenstein	<u>NEU15</u>	24.10.06 3:30	24
Hohenlohe	Neuenstein	NEU16	Keine Messwerte	300
Hohenlohe	Neuenstein	NEU17	Keine Messwerte	200
Hohenlohe	Neuenstein	NEU18	Keine Messwerte	200
Hohenlohe	Hermuthausen	HER1	9.3.06 15:15	570
Hohenlohe	Berndshausen	BER1	9.3.06 14:15	470
Hohenlohe	Seidelklingen	SEI1	9.3.06 16:30	290
Albvorland	Haigerloch-Weildorf	HAI1	10.3.06 16:00	590
Albvorland	Grosselfingen	GRS1	10.3.06 14:20	480
Oberschwaben	Fleischwangen	FLE1	10.3.06 10:00	290
Oberschwaben	Mittelurbach	MIT1	10.3.06 8:15	480

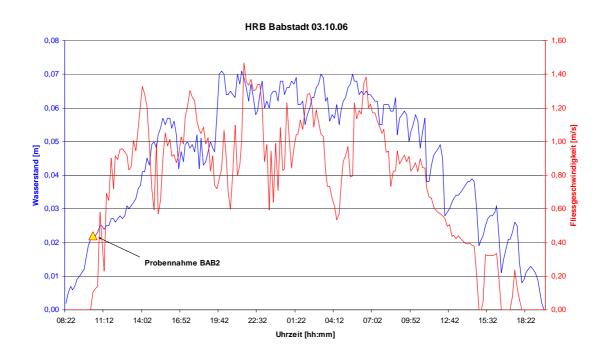
Standortübersicht: Tagesmittelwerte Einzelereignisse: Absolutwerte

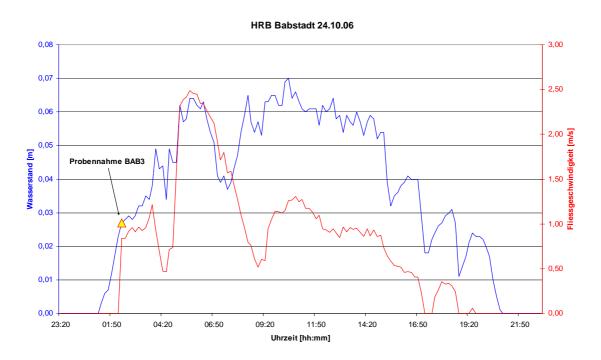


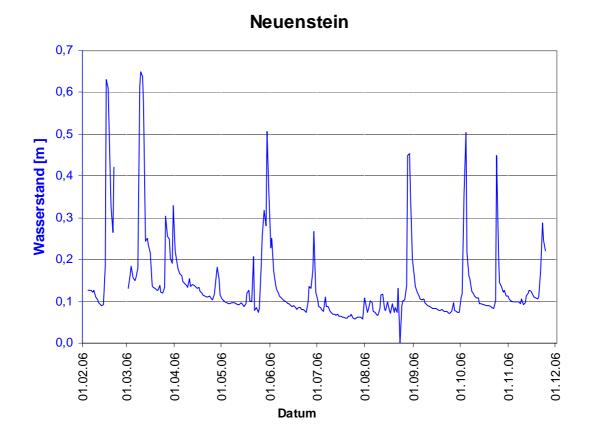

Grombach

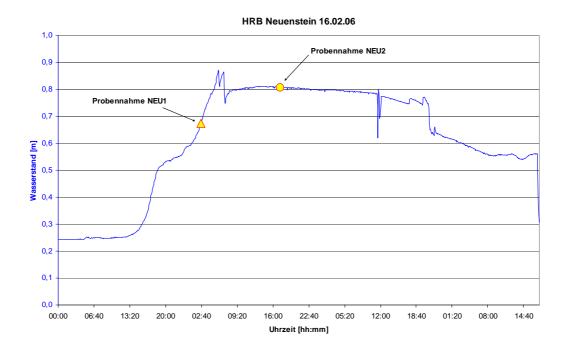


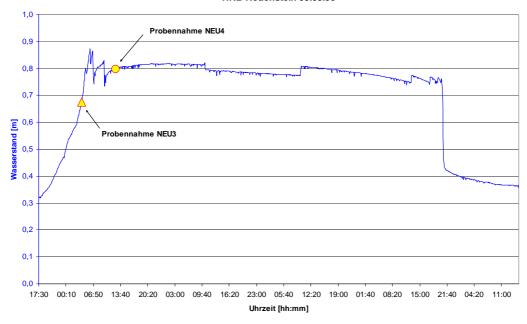


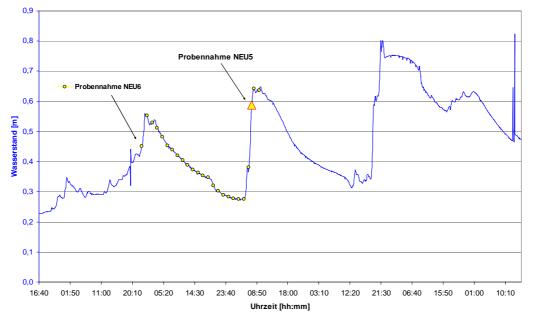


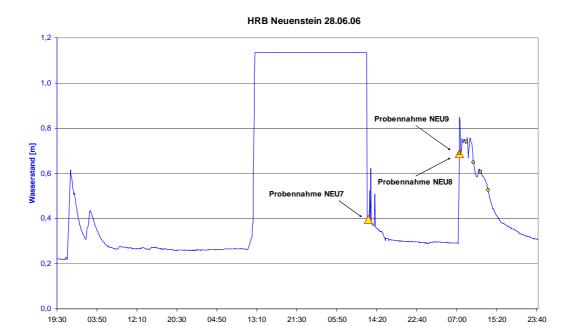



Babstadt

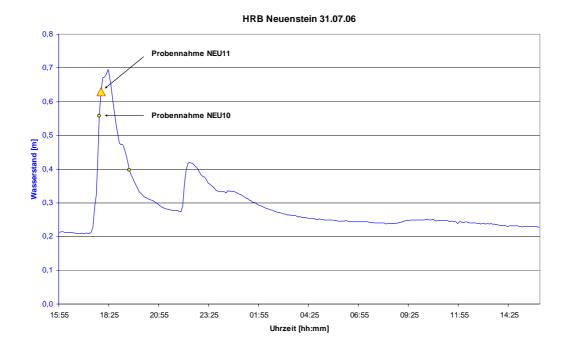


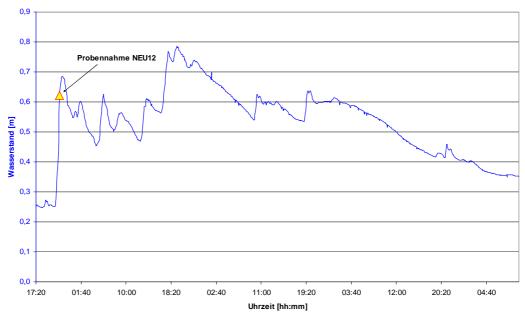


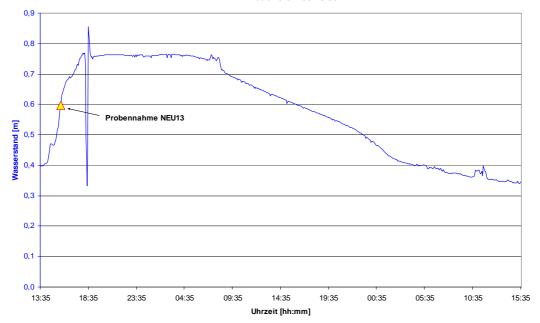


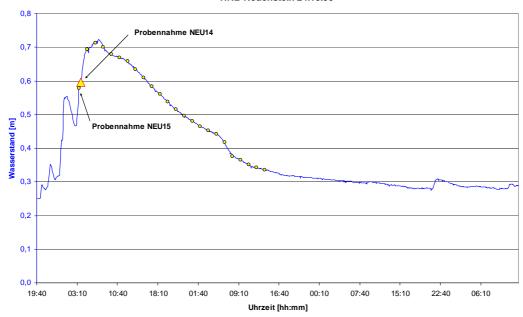


HRB Neuenstein 09.03.06






Uhrzeit [hh:mm]



HRB Neuenstein 03.10.06

HRB Neuenstein 24.10.06

H Korngrößenverteilungen: Mittelwerte u. Standardabweichungen in Prozent (Laser-Partikelmessungen)

			Bodenproben		Sedin	nentproben 0-	20 cm	Но	chwassersedime	nte	Hoc	hwasserüberstän	de
		Ton	Schluff	Sand	Ton	Schluff	Sand	Ton	Schluff	Sand	Ton	Schluff	Sand
Kraichgau	Eichtersheim (EIC)	$9,6 \pm 1,2$	$88,8 \pm 1,0$	$1,6 \pm 0,5$	7,1	90,6	2,3	-	-	1	-	-	1
	Grombach (GRO)	$14,0 \pm 4,8$	$85,5 \pm 4,6$	$0,4 \pm 0,3$	$11,0 \pm 2,4$	$88,3 \pm 2,0$	0.7 ± 0.7	$18,2 \pm 0,3$	$81,8 \pm 0,3$	$0,0 \pm 0,0$	$39,3 \pm 27,6$	$56,2 \pm 23,6$	$4,6 \pm 7,9$
	Babstadt (BAB)	$16,3 \pm 3,1$	$82,9 \pm 2,7$	0.7 ± 1.1	24,2	75,8	0,0	$13,3 \pm 1,0$	$86,5 \pm 1,1$	$0,2 \pm 0,1$	$22,7 \pm 6,1$	$71,9 \pm 10,3$	$5,4 \pm 9,2$
		$13,3 \pm 3,0$	$85,8 \pm 2,8$	0.9 ± 0.6	$14,1 \pm 9,0$	$84,9 \pm 8,0$	$1,0 \pm 1,2$	$15,8 \pm 0,7$	$84,2 \pm 0,7$	$0,1 \pm 0,1$	$31,0 \pm 16,8$	$64,0 \pm 17,0$	$5,0 \pm 8,6$
Hohenlohe	Neuenstein (NEU)	$20,5 \pm 6,7$	$79,3 \pm 6,6$	$0,2 \pm 0,2$	$14,2 \pm 4,3$	$84,4 \pm 4,3$	$1,4 \pm 0,5$	$14,9 \pm 8,4$	$83,3 \pm 6,9$	$1,8 \pm 2,3$	$16,0 \pm 11,8$	77.8 ± 13.0	$6,2 \pm 10,5$
	Berndshausen (BER)	$15,7 \pm 3,1$	83.8 ± 3.0	0.5 ± 0.2	$18,3 \pm 4,6$	$81,2 \pm 4,5$	0.6 ± 0.2	23,0	77,0	0,0	23,0	77,0	0,0
	Hermuthausen (HER)	$16,9 \pm 5,5$	$82,6 \pm 5,1$	0.5 ± 0.5	$16,0 \pm 3,1$	$83,5 \pm 2,9$	0.5 ± 0.1	14,4	85,1	0,6	22,5	77,5	0,0
	Seidelklingen (SEI)	$19,2 \pm 6,0$	$80,2 \pm 5,7$	0.7 ± 0.7	$13,6 \pm 0,8$	$85,5 \pm 0,8$	0.8 ± 0.0	23,8	76,2	0,0	19,2	68,0	12,8
		$18,1 \pm 5,3$	$81,5 \pm 5,1$	$0,5 \pm 0,4$	$15,5 \pm 3,2$	$83,7 \pm 3,1$	0.8 ± 0.2	$19,0 \pm 5,1$	$80,4 \pm 4,5$	0.6 ± 0.8	$20,2 \pm 3,3$	$75,1 \pm 4,7$	$4,8 \pm 6,1$
Albvorland	Haigerloch (HAI)	$15,0 \pm 3,5$	$82,3 \pm 2,3$	$2,7 \pm 2,9$	20,5	79,1	0,4	6,6	92,4	1,0	6,1	90,6	3,3
	Grosselfingen (GRS)	$25,2 \pm 5,1$	$74,4 \pm 4,4$	0.4 ± 0.7	$22,4 \pm 0,6$	$77,1 \pm 0,6$	0.5 ± 0.0	19,5	80,5	0,0	31,9	65,0	3,1
	Spaichingen (SPA)	$10,2 \pm 1,6$	$76,6 \pm 4,0$	$13,2 \pm 4,1$	$18,2 \pm 2,8$	$81,1 \pm 2,7$	0.7 ± 0.1	-	-	-	-	-	-
	Gunningen (GUN)	$17,6 \pm 2,7$	$81,6 \pm 2,3$	0.8 ± 0.7	$15,3 \pm 4,8$	$83,5 \pm 3,7$	$1,2 \pm 1,3$	-	-	1	-	-	-
		$17,0 \pm 3,2$	$78,7 \pm 3,3$	$4,3 \pm 2,1$	$19,1 \pm 2,7$	$80,2 \pm 2,3$	0.7 ± 0.5	$13,0 \pm 9,1$	$86,5 \pm 8,4$	0.5 ± 0.7	$19,0 \pm 18,2$	$77,8 \pm 18,1$	$3,2 \pm 0,1$
Oberschwaben	Fleischwangen (FLE)	$9,4 \pm 3,6$	$75,9 \pm 20,1$	$14,7 \pm 23,4$	$8,6 \pm 1,8$	$79,7 \pm 2,5$	$11,7 \pm 4,2$	12,1	87,9	0,0	21,7	62,2	16,0
	Mittelurbach (MIT)	$12,5 \pm 1,6$	$85,4 \pm 1,3$	$2,1 \pm 2,0$	$7,1 \pm 1,4$	$80,6 \pm 7,5$	$12,3 \pm 8,9$	3,3	91,2	5,5	11,1	40,1	48,6
		$10,9 \pm 2,6$	$80,7 \pm 10,7$	$8,4 \pm 12,7$	$7,9 \pm 1,6$	$80,2 \pm 5,0$	$12,0 \pm 6,6$	$7,7 \pm 6,2$	$89,5 \pm 2,3$	$2,7 \pm 3,9$	$16,5 \pm 7,5$	$51,2 \pm 15,6$	$32,3 \pm 23,1$
BaWü.		14.8 ± 3.5	$81,7 \pm 5,5$	$3,5 \pm 4,0$	$14,2 \pm 4,1$	$82,2 \pm 4,6$	$3,6 \pm 2,1$	$13,9 \pm 5,3$	$85,1 \pm 4,0$	$1,0 \pm 1,4$	$21,7 \pm 11,4$	$67,0 \pm 13,8$	$11,3 \pm 9,5$

I Korngrößenverteilungen: Mittelwerte und Standardabweichungen in Prozent (Fraktionierungsmethode)

			Bodenprober	1	Sedi	mentproben 0-2	0 cm	Н	lochwassersedimen	te
		Ton	Schluff	Sand	Ton	Schluff	Sand	Ton	Schluff	Sand
Kraichgau	Eichtersheim (EIC)	$11,0 \pm 1,3$	$80,4 \pm 5,5$	$8,6 \pm 5,6$	$10,5 \pm 2,8$	$69,1 \pm 11,8$	$20,4 \pm 12,8$	-	-	-
	Grombach (GRO)	$14,6 \pm 4,3$	$80,7 \pm 7,4$	$4,7 \pm 4,5$	$13,1 \pm 3,6$	$84,7 \pm 2,2$	$2,2 \pm 1,8$	$31,5 \pm 13,9$	$67,9 \pm 13,7$	0.6 ± 0.4
	Babstadt (BAB)	$6,4 \pm 2,2$	$72,4 \pm 7,8$	$6,4 \pm 2,2$	19,4	66,9	13,8	47.8 ± 25.0	$51,8 \pm 25,1$	0.3 ± 0.4
		$15,6 \pm 4,1$	$77,9 \pm 6,9$	$6,5 \pm 4,1$	$14,3 \pm 3,2$	$73,5 \pm 7,0$	$12,2 \pm 7,3$	$39,7 \pm 19,5$	59,8 ± 19,4	0.5 ± 0.4
Hohenlohe	Neuenstein (NEU)	$26,2 \pm 9,2$	$61,9 \pm 10,9$	11.8 ± 6.0	$19,2 \pm 11,9$	$62,4 \pm 12,5$	$18,4 \pm 15,1$	$29,0 \pm 18,4$	$65,9 \pm 16,2$	$5,1 \pm 5,5$
	Berndshausen (BER)	$15,6 \pm 4,8$	$66,7 \pm 9,9$	$17,7 \pm 7,9$	$20,4 \pm 9,3$	$55,7 \pm 13,8$	$23,9 \pm 9,5$	28,5	71,0	0,6
	Hermuthausen (HER)	$14,5 \pm 3,5$	$68,4 \pm 7,0$	$17,1 \pm 5,2$	$24,0 \pm 3,1$	$48,7 \pm 1,9$	$27,3 \pm 5,0$	26,9	68,9	26,9
	Seidelklingen (SEI)	$17,5 \pm 9,9$	$59,6 \pm 10,1$	$22,9 \pm 7,5$	$23,5 \pm 6,2$	$68,3 \pm 8,0$	$8,2 \pm 2,0$	30,1	65,7	4,2
		$18,5 \pm 6,8$	$64,2 \pm 9,5$	$17,4 \pm 6,6$	$21,8 \pm 7,6$	$58,8 \pm 9,1$	$19,5 \pm 7,9$	$28,6 \pm 1,3$	$67,9 \pm 2,5$	$3,5 \pm 2,0$
Albvorland	Haigerloch (HAI)	$10,0 \pm 3,5$	$48,9 \pm 6,7$	$41,1 \pm 7,9$	$30,1 \pm 12,9$	$62,3 \pm 13,7$	$7,6 \pm 0,8$	29,0	70,8	0,3
	Grosselfingen (GRS)	$15,6 \pm 2,9$	$46,0 \pm 9,8$	$38,4 \pm 9,6$	$5,8 \pm 0,7$	$48,6 \pm 7,8$	$45,7 \pm 7,2$	33,5	64,5	2,0
	Spaichingen (SPA)	$7,3 \pm 4,4$	$35,8 \pm 19,9$	$56,9 \pm 23,4$	$25,0 \pm 2,3$	$39,3 \pm 10,9$	$35,7 \pm 12,7$	-	-	-
	Gunningen (GUN)	$18,5 \pm 5,7$	$59,7 \pm 4,0$	$21,7 \pm 4,8$	$27,0 \pm 8,4$	$42,3 \pm 7,6$	$30,6 \pm 16,0$	-	-	-
		$12,9 \pm 4,1$	$47,6 \pm 10,1$	$39,5 \pm 11,4$	$31,9 \pm 7,7$	$48,1 \pm 10,0$	$19,9 \pm 7,5$	$31,2 \pm 3,2$	$67,6 \pm 4,4$	$1,1 \pm 1,2$
Oberschwaben	Fleischwangen (FLE)	$6,6 \pm 2,7$	$33,8 \pm 13,6$	$59,6 \pm 16,0$	$1,5 \pm 1,0$	$11,0 \pm 2,3$	$87,6 \pm 3,4$	18,9	79,6	1,4
•	Mittelurbach (MIT)	$7,6 \pm 2,6$	$45,7 \pm 6,9$	$46,7 \pm 8,2$	$3,3 \pm 2,8$	$37,0 \pm 17,3$	$59,7 \pm 19,5$	13,9	79,0	7,0
•		$7,1 \pm 2,7$	$39,7 \pm 10,3$	$53,2 \pm 12,1$	$2,4 \pm 1,9$	$24,0 \pm 9,8$	$73,6 \pm 11,4$	$16,4 \pm 3,5$	$79,3 \pm 0,4$	$4,2 \pm 4,0$
•			•							
BaWü.		$13,5 \pm 4,4$	$57,3 \pm 9,2$	$29,1 \pm 8,6$	$17,6 \pm 5,1$	$51,1 \pm 9,0$	$31,3 \pm 8,6$	$29,0 \pm 6,9$	$68,7 \pm 6,7$	$2,3 \pm 1,9$

J ER - Phosphor

Kraichgau	P	Mittelwert	Median	Min	Max	Anzahl
Eichtersheim (EIC)	P_Boden	1053	998	891	1246	10
	P_Sediment	1085	1043	903	1350	4
	P_Sediment_Ton	2031	1905	1548	2766	4
	P_HWsediment_Ton	Kein HW				
	ER(P)	1,03	1,05	1,01	1,08	
	ER(P_Ton_HW)	Kein HW				
	ER(P_Ton_Sediment)	1,93	1,91	1,74	2,22	
	·					
	P	Mittelwert	Median	Min	Max	Anzahl
Grombach (GRO)	P_Boden	979	969	673	1246	18
(1 1)	P_Sediment	1011	1028	939	1047	4
	P_Sediment_Ton	1915	1934	1750	2041	4
	P_HWsediment_Ton	1896	1852	1498	2338	3
	ER(P)	1,03	1,06	1,40	0,84	-
	ER(P_Ton_HW)	1,94	1,91	2,23	1,88	
	ER(P_Ton_Sediment)	1,96	1,99	2,60	1,64	
	P_HW_partikulär	1079	1118	918	1199	3
	P_HW_gesamt	1360	1219	1065	1795	3
	ER(HW_P_partikulär)	1,10	1,15	1,36	0,96	Ü
	ER(HW_P_gesamt)	1,39	1,26	1,58	1,44	
	P	Mittelwert	Median	Min	Max	Anzahl
Babstadt (BAB)	PP_Boden	Mittelwert 751	Median 736	Min 681	Max 830	Anzahl
Babstadt (BAB)						
Babstadt (BAB)	P_Boden	751	736	681	830	6
Babstadt (BAB)	P_Boden P_Sediment	751 1060	736 1060	681 1016	830 1104	6 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton	751 1060 1505	736 1060 1505	681 1016 1450	830 1104 1560	6 2 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton	751 1060 1505 2084	736 1060 1505 2084	681 1016 1450 2029	830 1104 1560 2138	6 2 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P)	751 1060 1505 2084 1,41	736 1060 1505 2084 1,44	681 1016 1450 2029 1,49	830 1104 1560 2138 1,33	6 2 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment)	751 1060 1505 2084 1,41 2,77	736 1060 1505 2084 1,44 2,83	681 1016 1450 2029 1,49 2,98	830 1104 1560 2138 1,33 2,57	6 2 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW)	751 1060 1505 2084 1,41 2,77 2,00	736 1060 1505 2084 1,44 2,83 2,05	681 1016 1450 2029 1,49 2,98 2,13	830 1104 1560 2138 1,33 2,57 1,88	6 2 2 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär	751 1060 1505 2084 1,41 2,77 2,00 1874	736 1060 1505 2084 1,44 2,83 2,05 1874	681 1016 1450 2029 1,49 2,98 2,13 1414	830 1104 1560 2138 1,33 2,57 1,88 2334	6 2 2 2 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt	751 1060 1505 2084 1,41 2,77 2,00 1874 4494	736 1060 1505 2084 1,44 2,83 2,05 1874 4494	681 1016 1450 2029 1,49 2,98 2,13 1414 3929	830 1104 1560 2138 1,33 2,57 1,88 2334 5058	6 2 2 2 2
Babstadt (BAB)	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt ER(HW_P_partikulär)	751 1060 1505 2084 1,41 2,77 2,00 1874 4494 2,50	736 1060 1505 2084 1,44 2,83 2,05 1874 4494 2,55	681 1016 1450 2029 1,49 2,98 2,13 1414 3929 2,08	830 1104 1560 2138 1,33 2,57 1,88 2334 5058 2,81	6 2 2 2 2
Babstadt (BAB) Hohenlohe	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt ER(HW_P_partikulär)	751 1060 1505 2084 1,41 2,77 2,00 1874 4494 2,50	736 1060 1505 2084 1,44 2,83 2,05 1874 4494 2,55	681 1016 1450 2029 1,49 2,98 2,13 1414 3929 2,08	830 1104 1560 2138 1,33 2,57 1,88 2334 5058 2,81	6 2 2 2 2
	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt ER(HW_P_partikulär) ER(HW_P_gesamt)	751 1060 1505 2084 1,41 2,77 2,00 1874 4494 2,50 5,98	736 1060 1505 2084 1,44 2,83 2,05 1874 4494 2,55 6,11	681 1016 1450 2029 1,49 2,98 2,13 1414 3929 2,08 5,77	830 1104 1560 2138 1,33 2,57 1,88 2334 5058 2,81 6,09	6 2 2 2 2
Hohenlohe	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt ER(HW_P_partikulär) ER(HW_P_gesamt)	751 1060 1505 2084 1,41 2,77 2,00 1874 4494 2,50 5,98	736 1060 1505 2084 1,44 2,83 2,05 1874 4494 2,55 6,11	681 1016 1450 2029 1,49 2,98 2,13 1414 3929 2,08 5,77	830 1104 1560 2138 1,33 2,57 1,88 2334 5058 2,81 6,09	6 2 2 2 2 2 4 Anzahl
Hohenlohe	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt ER(HW_P_partikulär) ER(HW_P_gesamt)	751 1060 1505 2084 1,41 2,77 2,00 1874 4494 2,50 5,98	736 1060 1505 2084 1,44 2,83 2,05 1874 4494 2,55 6,11	681 1016 1450 2029 1,49 2,98 2,13 1414 3929 2,08 5,77	830 1104 1560 2138 1,33 2,57 1,88 2334 5058 2,81 6,09	6 2 2 2 2 2 2 Anzahl
Hohenlohe	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt ER(HW_P_partikulär) ER(HW_P_gesamt)	751 1060 1505 2084 1,41 2,77 2,00 1874 4494 2,50 5,98 Mittelwert 1300 1126	736 1060 1505 2084 1,44 2,83 2,05 1874 4494 2,55 6,11 Median 1256 1212	681 1016 1450 2029 1,49 2,98 2,13 1414 3929 2,08 5,77 Min 882 846	830 1104 1560 2138 1,33 2,57 1,88 2334 5058 2,81 6,09 Max 2034 1320	6 2 2 2 2 2 2 Anzahl 17 3
Hohenlohe	P_Boden P_Sediment P_Sediment_Ton P_HWsediment_Ton ER(P) ER(P_Ton_HW) ER(P_Ton_Sediment) P_HW_partikulär P_HW_gesamt ER(HW_P_partikulär) ER(HW_P_gesamt)	751 1060 1505 2084 1,41 2,77 2,00 1874 4494 2,50 5,98 Mittelwert 1300 1126 1628	736 1060 1505 2084 1,44 2,83 2,05 1874 4494 2,55 6,11 Median 1256 1212 1632	681 1016 1450 2029 1,49 2,98 2,13 1414 3929 2,08 5,77 Min 882 846 1452	830 1104 1560 2138 1,33 2,57 1,88 2334 5058 2,81 6,09 Max 2034 1320 1801	6 2 2 2 2 2 2 Anzahl 17 3 3

	EK(F_1011_Sedifficiti)	1,23	1,30	1,05	0,09	
	P_HW_partikulär	1576	1139	388	6232	9
	P_HW_gesamt	1941	1358	523	6232	9
	ER(HW_P_partikulär)	1,21	0,91	0,44	3,06	
	ER(HW_P_gesamt)	1,49	1,08	0,59	3,06	
	P	Mittelwert	Median	Min	Max	Anzahl
Berndshausen (BER)	P_Boden	1117	1135	894	1443	11
	P_Sediment	1113	1153	913	1234	4
	P_Sediment_Ton	1495	1664	900	1751	4
	P_HWsediment_Ton	2102	2102	2102	2102	1
	ER(P)	1,00	1,02	1,02	0,86	
	ER(P_Ton_HW)	1,88	1,85	2,35	1,46	
	ER(P_Ton_Sediment)	1,34	1,47	1,01	1,21	
	P_HW_partikulär	1520	1520	1520	1520	1
	P_HW_gesamt	3036	3036	3036	3036	1
	ER(HW_P_partikulär)	1,36	1,34	1,70	1,05	
	ER(HW_P_gesamt)	2,72	2,67	3,40	2,10	
	Р	Mittalwant	Madian	Min	May	Annahi
Harmuthausan (HED)	P_Boden	Mittelwert 1495	Median 1477	Min 1037	Max 1747	Anzahl 7
Hermuthausen (HER)	P_Sediment	1217	1217	1189	1244	
	P_Sediment_Ton	1451	1451	1270	1632	2 2
	P_HWsediment_Ton	1983	1983	1983	1983	1
	ER(P)	0,81	0,82	1,15	0,71	'
	ER(P_Ton_HW)	1,33	1,34	1,13	1,14	
	ER(P_Ton_Sediment)	0,97	0,98	1,22	0,93	
	P_HW_partikulär	1586	1586	1586	1586	1
	P_HW_gesamt	3843	3843	3843	3843	
	-					1
	ER(HW_P_partikulär)	1,06	1,07	1,53	0,91	
	ER(HW_P_gesamt)	2,57	2,60	3,71	2,20	
	P	Mittelwert	Median	Min	Max	Anzahl
Seidelklingen (SEI)	P_Boden	1109	1107	310	1677	14
	P_Sediment	1255	1274	1216	1274	3
	P_Sediment_Ton	2044	2116	1900	2116	3
	P_HWsediment_Ton	1889	1889	1889	1889	1
	ER(P)	1,13	1,15	3,92	0,76	
	ER(P_Ton_HW)	1,70	1,71	6,09	1,13	
	ER(P_Ton_Sediment)	1,84	1,91	6,13	1,26	
	P_HW_partikulär	1136	1136	1136	1136	1
	P_HW_gesamt	1618	1618	1618	1618	1
	ER(HW_P_partikulär)	1,02	1,03	3,66	0,68	
	ER(HW_P_gesamt)	1,46	1,46	5,22	0,96	
	- '					

ER(P_Ton_Sediment)

1,25

1,30

1,65

0,89

Albvorland	Р	Mittelwert	Median	Min	Max	Anzahl
Haigerloch-Weildorf (HAI)	P_Boden	1148	1071	724	1534	8
	P_Sediment	1282	1282	1171	1392	2
	P_Sediment_Ton	1332	1332	1200	1465	2
	P_HWsediment_Ton	2742	2742	2742	2742	1
	ER(P)	1,12	1,20	1,62	0,91	
	ER(P_Ton_HW)	2,39	2,56	3,79	1,79	
	ER(P_Ton_Sediment)	1,16	1,24	1,66	0,96	
	P_HW_partikulär	5155	5155	5155	5155	1
	P_HW_gesamt	13004	13004	13004	13004	1
	ER(HW_P_partikulär)	4,49	4,82	7,12	3,36	
	ER(HW_P_gesamt)	11,33	12,15	17,96	8,48	
	P	Mittelwert	Median	Min	Max	Anzahl
Grosselfingen (GRS)	P_Boden	1325	1377	1052	1466	10
	P_Sediment	965	965	818	1111	2
	P_Sediment_Ton	1286	1286	1213	1360	2
	P_HWsediment_Ton	1876	1876	1876	1876	1
	ER(P)	0,73	0,70	0,78	0,76	
	ER(P_Ton_HW)	1,42	1,36	1,78	1,28	
	ER(P_Ton_Sediment)	0,97	0,93	1,15	0,93	
	P_HW_partikulär	2256	2256	2256	2256	1
	P_HW_gesamt	3803	3803	3803	3803	1
	ER(HW_P_partikulär)	1,70	1,64	2,14	1,54	
	ER(HW_P_gesamt)	2,87	2,76	3,62	2,59	
On alabin man (ODA)	P	Mittelwert	Median	Min	Max	Anzahl
Spaichingen (SPA)	P_Boden	1566	1580	1344	1719	5
	P_Sediment	2074	1999	1651	2571	3
	P_Sediment_Ton	2110	2043	1945	2342	3
	P_HWsediment_Ton	Kein HW	4.07	4.00	1.50	
	ER(P) ER(P_Ton_HW)	1,32 Kein HW	1,27	1,23	1,50	
	ER(P_Ton_Sediment)	1,35	1.20	1 15	1,36	
	EK(F_1011_3euilleili)	1,33	1,29	1,45	1,30	
	P	Mittelwert	Median	Min	Max	Anzahl
Staufelberg Parkplatz (STA)	P_Boden	1894	1840	1815	2026	3
Cadiologia anplate (OTA)	P_Sediment	1241	1241	1241	1241	1
	P_Sediment_Ton	1983	1983	1983	1983	1
	P_HWsediment_Ton	Kein HW	1000	1000	1000	'
	ER(P)	0,66	0,67	0,68	0,61	
	ER(P_Ton_HW)	Kein HW	٠,٠,٠	5,50	5,51	
	ER(P_Ton_Sediment)	1,05	1,08	1,09	0,98	
		.,00	.,50	.,50	-,00	

	P	Mittelwert	Median	Min	Max	Anzahl
Staufelberg Schwimmbad (STA)	P_Boden	1760	1760	1534	1985	2
	P_Sediment	1309	1309	1309	1309	1
	P_Sediment_Ton	2172	2172	2172	2172	1
	P_HWsediment_Ton	Kein HW				
	ER(P)	0,74	0,74	0,85	0,66	
	ER(P_Ton_HW)	Kein HW				
	ER(P_Ton_Sediment)	1,23	1,23	1,42	1,09	
	P	Mittelwert	Median	Min	Max	Anzahl
Gunningen (GUN)	P_Boden	1603	1652	1194	1934	11
	P_Sediment	1385	1385	1339	1431	2
	P_Sediment_Ton	1388	1388	1166	1609	2
	P_HWsediment_Ton	Kein HW				
	ER(P)	0,86	0,84	1,12	0,74	
	ER(P_Ton_HW)	Kein HW				
	ER(P_Ton_Sediment)	0,87	0,84	0,98	0,83	
Oberschwaben	P	Mittelwert	Median	Min	Max	Anzahl
Fleischwangen (FLE)	P_Boden	1385	1219	964	2479	11
	P_Sediment	1019	1019	920	1117	2
	P_Sediment_Ton	1653	1653	1408	1899	2
	P_HWsediment_Ton	3052	3052	3052	3052	1
	ER(P)	0,74	0,84	0,95	0,45	
	ER(P_Ton_HW)	2,20	2,50	3,17	1,23	
	ER(P_Ton_Sediment)	1,19	1,36	1,46	0,77	
	P_HW_partikulär	2306	2306	2306	2306	1
	P_HW_gesamt	16668	16668	16668	16668	1
	ER(HW_P_partikulär)	1,66	1,89	2,39	0,93	
	ER(HW_P_gesamt)	12,03	13,67	17,29	6,72	
	P	Mittelwert	Median	Min	Max	Anzahl
Mittelurbach (MIT)	P_Boden	1346	1391	902	1959	13
- •	P_Sediment	1057	1096	732	1342	3
	P_Sediment_Ton	2049	1734	1496	2916	3
	P_HWsediment_Ton	3608	3608	3608	3608	1
	ER(P)	0,78	0,79	0,81	0,69	
	ER(P_Ton_HW)	2,68	2,59	4,00	1,84	
	ER(P_Ton_Sediment)	1,52	1,25	1,66	1,49	
	P_HW_partikulär	3641	3641	3641	3641	1
	P_HW_gesamt	13648	13648	13648	13648	1
	ER(HW_P_partikulär)	2,70	2,62	4,04	1,86	

ER(HW_P_gesamt) 10,14 9,81 15,13 6,97

Kraichgau	P	Mittelwert	Median	Min	Max	Anzahl
3 Standorte	P_Boden	928	969	673	1246	34
	P_Sediment	1052	1043	903	1350	10
	P_Sediment_Ton	1817	1905	1450	2766	10
	P_HWsediment_Ton	1990	1968	1498	2338	5
	ER(P)	1,13	1,08	1,05	1,44	
	ER(P_Ton_HW)	2,15	2,03	1,91	2,83	
	ER(P_Ton_Sediment)	1,96	1,97	1,91	2,05	
	P_HW_partikulär	1476	1496	918	2334	2
	P_HW_gesamt	2927	2856	1065	5058	2
	ER(HW_P_partikulär)	1,59	1,54	1,36	1,87	
	ER(HW_P_gesamt)	3,16	2,95	1,58	4,06	
Hohenlohe	P	Mittelwert	Median	Min	Max	Anzahl
4 Standorte	P_Boden	1255	1196	310	2034	49
. 3.0000	P_Sediment	1178	1214	846	1320	12
	P_Sediment_Ton	1654	1648	900	2116	12
	P_HWsediment_Ton	1973	1965	1274	2525	10
	ER(P)	0,94	1,02	0,82	1,15	
	ER(P_Ton_HW)	1,57	1,64	1,34	1,85	
	ER(P_Ton_Sediment)	1,32	1,38	0,98	1,91	
	P_HW_partikulär	1454	1330	388	6232	4
	P_HW_gesamt	2609	2327	523	6232	4
	ER(HW_P_partikulär)	1,16	1,11	1,25	3,06	-
	ER(HW_P_gesamt)	2,08	1,95	1,69	3,06	
Albvorland	P	Mittelwert	Median	Min	Max	Anzah
4 Standorte	P_Boden	1410	1479	724	1934	34
· Juliaono	P_Sediment	1426	1333	818	2571	9
	P_Sediment_Ton	1529	1360	1166	2342	9
	P_HWsediment_Ton	2309	2309	1876	2742	2
	ER(P)	1,01	0,90	0,70	1,27	_
	ER(P_Ton_HW)	1,64	1,56	1,36	2,56	
	ER(P_Ton_Sediment)	1,08	0,92	0,93	1,29	
	P_HW_partikulär	5155	5155	5155	5155	1
	P_HW_gesamt	13004	13004	13004	13004	1
	ER(HW_P_partikulär)	3,66	3,49	7,12	2,67	-
	ER(HW_P_gesamt)	9,22	8,80	17,96	6,72	
berschwaben	P	Mittelwert	Median	Min	Max	Anzah
	·					
2 Standorte	P_Boden	1366	1305	902	2479	24

P_Sediment	1038	1057	732	1342	5
P_Sediment_Ton	1851	1694	1408	2916	5
P_HWsediment_Ton	3330	3330	3052	3608	2
ER(P)	0,76	0,81	0,79	0,84	
ER(P_Ton_HW)	2,44	2,55	2,50	2,59	
ER(P_Ton_Sediment)	1,36	1,30	1,25	1,36	
P_HW_partikulär	2973	2973	2306	3641	2,00
P_HW_gesamt	15158	15158	13648	16668	2,00
ER(HW_P_partikulär)	2,18	2,28	2,56	1,47	
ER(HW_P_gesamt)	11,10	11,62	15,13	6,72	

Baden-Württemberg (alle Standorte)	P	Mittelwert	Median	Min	Max	Anzahl
13 Standorte	P_Boden	1240	1250	310	2479	141
	P_Sediment	1173	1136	732	2571	36
	P_Sediment_Ton	1713	1671	900	2916	36
	P_HWsediment_Ton	2400	2138	1274	3608	19
	ER(P)	0,95	0,91	0,70	1,05	
	ER(P_Ton_HW)	1,94	1,71	1,34	2,50	
	ER(P_Ton_Sediment)	1,38	1,34	0,93	1,91	
	P_HW_partikulär	2765	2235	388	6232	4
	P_HW_gesamt	8425	7930	523	16668	4
	ER(HW_P_partikulär)	2,23	1,79	1,25	2,51	
	ER(HW_P_gesamt)	6,80	6,34	1,69	6,72	

KER - Schwermetalle

Kraichgau	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Eichtersheim	Cd_Boden	0,22	0,22	0,15	0,28	10		
(EIC)	Cd_Sediment	0,28	0,23	0,19	0,45	4		
	Cd_Sediment_Ton	0,29	0,25	0,23	0,43	4		
	Cd_Hochwasser_Ton	Kein HW						
	ER(Cd)	1,27	1,05	1,27	1,61		0,68	3,00
	ER(Cd_Ton_HW)	Kein HW						
	ER(Cd_Ton_Sediment)	1,34	1,14	1,53	1,54			
	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grombach (GRO)	Cd_Boden	0,18	0,18	0,13	0,22	9		
	Cd_Sediment	0,16	0,18	0,12	0,19	4		
	Cd_Sediment_Ton	0,35	0,35	0,33	0,38	4		
	Cd_Hochwasser_Ton	0,44	0,44	0,38	0,49	2		
	ER(Cd)	0,92	0,97	0,90	0,86		0,53	1,45
	ER(Cd_Ton_HW)	2,45	2,42	2,92	2,23			
	ER(Cd_Ton_Sediment)	1,98	1,93	2,55	1,72			
	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Babstadt (BAB)	Cd_Boden	0,13	0,14	0,11	0,14	6	2.1.(0)	zit(o: max)
Babbiaar (B/15)	Cd_Sediment	0,18	0,18	0,17	0,18	2		
	Cd_Sediment_Ton	0,19	0,19	0,19	0,19	1		
	Cd_Hochwasser_Ton	0,33	0,33	0,33	0,33	1		
	ER(Cd)	1,35	1,25	1,55	1,29		1,21	1,64
	ER(Cd_Ton_HW)	2,54	2,36	3,00	2,36		,	•
	ER(Cd_Ton_Sediment)	1,46	1,36	1,73	1,36			
Hohenlohe	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Hohenlohe Neuenstein (NEU)	Cd_Boden	0,22	0,18	0,15	0,38	17	ER(GPmin)	ER(GPmax)
	Cd_Boden Cd_Sediment	0,22 0,19	0,18 0,19	0,15 0,18	0,38 0,19	17 3	ER(GPmin)	ER(GPmax)
	Cd_Boden Cd_Sediment Cd_Sediment_Ton	0,22 0,19 0,18	0,18 0,19 0,15	0,15 0,18 0,14	0,38 0,19 0,25	17 3 3	ER(GPmin)	ER(GPmax)
	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton	0,22 0,19 0,18 0,29	0,18 0,19 0,15 0,27	0,15 0,18 0,14 0,20	0,38 0,19 0,25 0,41	17 3	, ,	
	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,22 0,19 0,18 0,29 0,86	0,18 0,19 0,15 0,27 1,06	0,15 0,18 0,14 0,20 1,20	0,38 0,19 0,25 0,41 0,50	17 3 3	ER(GPmin)	ER(GPmax)
	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,22 0,19 0,18 0,29 0,86 1,35	0,18 0,19 0,15 0,27 1,06 1,50	0,15 0,18 0,14 0,20 1,20 1,33	0,38 0,19 0,25 0,41 0,50 1,08	17 3 3	, ,	
	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,22 0,19 0,18 0,29 0,86	0,18 0,19 0,15 0,27 1,06	0,15 0,18 0,14 0,20 1,20	0,38 0,19 0,25 0,41 0,50	17 3 3	, ,	
	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,22 0,19 0,18 0,29 0,86 1,35	0,18 0,19 0,15 0,27 1,06 1,50	0,15 0,18 0,14 0,20 1,20 1,33	0,38 0,19 0,25 0,41 0,50 1,08	17 3 3	, ,	
	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,22 0,19 0,18 0,29 0,86 1,35	0,18 0,19 0,15 0,27 1,06 1,50	0,15 0,18 0,14 0,20 1,20 1,33	0,38 0,19 0,25 0,41 0,50 1,08	17 3 3	, ,	
	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment)	0,22 0,19 0,18 0,29 0,86 1,35 0,83	0,18 0,19 0,15 0,27 1,06 1,50 0,83	0,15 0,18 0,14 0,20 1,20 1,33 0,93	0,38 0,19 0,25 0,41 0,50 1,08 0,66	17 3 3 3 3	0,47	1,27
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment)	0,22 0,19 0,18 0,29 0,86 1,35 0,83	0,18 0,19 0,15 0,27 1,06 1,50 0,83	0,15 0,18 0,14 0,20 1,20 1,33 0,93	0,38 0,19 0,25 0,41 0,50 1,08 0,66	17 3 3 3 3	0,47	1,27
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min	0,38 0,19 0,25 0,41 0,50 1,08 0,66	17 3 3 3 3 4 Anzahl	0,47	1,27
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27	17 3 3 3 3 4 Anzahl	0,47	1,27
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23	17 3 3 3 3 4 Anzahl 11 4 4	0,47	1,27
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90	17 3 3 3 3 4 Anzahl 11 4 4	0,47	1,27 ER(GPmax)
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23	17 3 3 3 3 4 Anzahl 11 4 4	0,47	1,27 ER(GPmax)
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90	17 3 3 3 3 4 Anzahl 11 4 4	0,47	1,27 ER(GPmax)
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90	17 3 3 3 3 4 Anzahl 11 4 4	0,47	1,27 ER(GPmax)
Neuenstein (NEU)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18 2,13	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29 1,69	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59 1,71	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90 3,13	17 3 3 3 3 4 4 4 1	0,47 ER(GPmin) 1,07	1,27 ER(GPmax) 7,47
Berndshausen (BER)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd_Cd_Ton_HW) ER(Cd_Ton_Sediment)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18 2,13	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29 1,69	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59 1,71	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90 3,13	17 3 3 3 3 3 Anzahl 11 4 4 1	0,47 ER(GPmin) 1,07	1,27 ER(GPmax) 7,47
Berndshausen (BER)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd_Cd_Boden	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18 2,13	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29 1,69 Median 0,19	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59 1,71 Min 0,17	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90 3,13	17 3 3 3 3 3 Anzahl 11 4 4 1	0,47 ER(GPmin) 1,07	1,27 ER(GPmax) 7,47
Berndshausen (BER)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Dediment	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18 2,13 Mittelwert 0,19 0,18	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29 1,69 Median 0,19 0,18	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59 1,71 Min 0,17 0,15	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90 3,13	17 3 3 3 3 3 Anzahl 11 4 4 1	0,47 ER(GPmin) 1,07 ER(GPmin)	1,27 ER(GPmax) 7,47
Berndshausen (BER)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_Sediment) Cd Cd_Goden Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18 2,13 Mittelwert 0,19 0,18	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29 1,69 Median 0,19 0,18 0,18	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59 1,71 Min 0,17 0,15 0,16	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90 3,13	17 3 3 3 3 3 Anzahl 11 4 4 1 1	0,47 ER(GPmin) 1,07	1,27 ER(GPmax) 7,47
Berndshausen (BER)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18 2,13 Mittelwert 0,19 0,18 0,18 0,39 0,91 2,04	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29 1,69 Median 0,19 0,18 0,18 0,39 0,92 2,05	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59 1,71 Min 0,17 0,15 0,15 0,16 0,39 0,88 2,29	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90 3,13 Max 0,22 0,20 0,19 0,39 0,91 1,77	17 3 3 3 3 3 Anzahl 11 4 4 1 1	0,47 ER(GPmin) 1,07 ER(GPmin)	1,27 ER(GPmax) 7,47 ER(GPmax)
Berndshausen (BER)	Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_Sediment) Cd Cd_Goden Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,22 0,19 0,18 0,29 0,86 1,35 0,83 Mittelwert 0,23 0,62 0,49 0,27 2,71 1,18 2,13 Mittelwert 0,19 0,18 0,18 0,39 0,91	0,18 0,19 0,15 0,27 1,06 1,50 0,83 Median 0,21 0,44 0,36 0,27 2,10 1,29 1,69 Median 0,19 0,18 0,18 0,39 0,92	0,15 0,18 0,14 0,20 1,20 1,33 0,93 Min 0,17 0,32 0,29 0,27 1,88 1,59 1,71 Min 0,17 0,15 0,16 0,39 0,88	0,38 0,19 0,25 0,41 0,50 1,08 0,66 Max 0,30 1,27 0,94 0,27 4,23 0,90 3,13 Max 0,22 0,20 0,19 0,39 0,91	17 3 3 3 3 3 Anzahl 11 4 4 1 1	0,47 ER(GPmin) 1,07 ER(GPmin)	1,27 ER(GPmax) 7,47 ER(GPmax)

	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Seidelklingen	Cd_Boden	0,31	0,24	0,17	0,67	14		
(SEI)	Cd_Sediment Cd Sediment Ton	0,24 0,29	0,24 0,30	0,23 0,26	0,24 0,30	3 3		
	Cd_Hochwasser_Ton	0,42	0,30	0,20	0,30	1		
	ER(Cd)	0,77	1,02	1,35	0,36	•	0,34	1,41
	ER(Cd_Ton_HW)	1,36	1,79	2,47	0,63			
	ER(Cd_Ton_Sediment)	0,93	1,28	1,53	0,45			
Albvorland	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Haigerloch-	Cd_Boden	0,34	0,19	0,08	1,26	8		
Weildorf (HAI)	Cd_Sediment	0,11	0,11	0,08	0,13	2		
	Cd_Sediment_Ton Cd_Hochwasser_Ton	0,16 0,66	0,16 0,66	0,14 0,66	0,18 0,66	2 1		
	ER(Cd)	0,31	0,57	1,00	0,00	1	0,06	1,63
	ER(Cd_Ton_HW)	1,96	3,57	8,25	0,52		0,00	.,00
	ER(Cd_Ton_Sediment)	0,48	0,86	1,75	0,14			
	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grosselfingen	Cd_Boden	0,21	0,21	0,09	0,35	10		
(GRS)	Cd_Sediment	0,27	0,27	0,25	0,28	2		
	Cd_Sediment_Ton Cd Hochwasser Ton	0,26 0,33	0,26 0,33	0,25 0,33	0,26 0,33	2 1		
	ER(Cd)	1,26	1,26	2,78	0,80	'	0,71	3,11
	ER(Cd_Ton_HW)	1,57	1,57	3,67	0,94		-,	-,
	ER(Cd_Ton_Sediment)	1,21	1,21	2,78	0,74			
	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Spaichingen	Cd_Boden	0,13	0,12	0,08	0,17	5		
(SPA)	Cd_Sediment	0,18	0,19	0,17	0,19	3 3		
	Cd_Sediment_Ton Cd_Hochwasser_Ton	0,19 Kein HW	0,19	0,19	0,19	3		
	ER(Cd)	1,43	1,58	2,13	1,12		1,00	2,38
	ER(Cd_Ton_HW)	Kein HW	,	, -			,	,
	ER(Cd_Ton_Sediment)	1,48	1,58	2,38	1,12			
	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Cd_Boden Cd_Sediment	0,17	0,16	0,13 0,09	0,21	3		
Parkplatz	Cd_Sediment_Ton	0,09 0,07	0,09 0,07	0,09	0,09 0,07	1 1		
	Cd_Hochwasser_Ton	Kein HW	0,01	0,01	0,01	•		
	ER(Cd)	0,54	0,56	0,69	0,43		0,43	0,69
	ER(Cd_Ton_HW)	Kein HW	0.44	0.54	0.22			
	ER(Cd_Ton_Sediment)	0,42	0,44	0,54	0,33			
.	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Cd_Boden	0,15	0,15	0,11	0,18	2		
Schwimmbad	Cd_Sediment Cd_Sediment_Ton	0,07 0,06	0,07 0,06	0,07 0,06	0,07 0,06	1 1		
	Cd_Sediment_ron Cd Hochwasser Ton	Kein HW	5,00	5,50	0,00	ı.		
	ER(Cd)	0,48	0,48	0,64	0,39		0,39	0,64
	ER(Cd_Ton_HW)	Kein HW						
	ER(Cd_Ton_Sediment)	0,41	0,41	0,55	0,33			
	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Gunningen (GUN)	Cd_Boden	0,11	0,08	0,04	0,21	11		
	Cd_Sediment	0,06	0,06	0,03	0,09	2		
	Cd_Sediment_Ton Cd_Hochwasser_Ton	0,07 Kein HW	0,07	0,00	0,13	2		

	ER(Cd) ER(Cd_Ton_HW)	0,57 Kein HW	0,75	0,75	0,43		0,14	2,25
	ER(Cd_Ton_Sediment)	0,62	0,81	0,00	0,62			
Oberschwaben	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Fleischwangen	Cd Boden	0,26	0,20	0,13	0,61	11	EK(GPIIIII)	EK(GFIIIAX)
(FLE)	Cd_Sediment	0,27	0,27	0,26	0,28	2		
	Cd_Sediment_Ton	0,27	0,27	0,21	0,33	2		
	Cd_Hochwasser_Ton	0,35	0,35	0,35	0,35	1	0.40	0.45
	ER(Cd) ER(Cd_Ton_HW)	1,06 1,37	1,35	2,00	0,46		0,43	2,15
	ER(Cd_Ton_Sediment)	1,06	1,75 1,35	2,69 1,62	0,57 0,54			
	211(04_1011_00411110111)	1,00	1,00	1,02	0,0 1			
	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Mittelurbach (MIT)	Cd_Boden	0,19	0,19	0,12	0,27	13		
	Cd_Sediment Cd_Sediment_Ton	0,22 0,34	0,21 0,32	0,14 0,28	0,30	3 3		
	Cd_Sediment_ron Cd Hochwasser Ton	0,34	0,32	0,28	0,43 0,79	3 1		
	ER(Cd)	1,12	1,11	1,17	1,11	•	0,52	2,50
	ER(Cd_Ton_HW)	4,09	4,16	6,58	2,93		-,-	,
	ER(Cd_Ton_Sediment)	1,78	1,68	2,33	1,59			
Kraichgau	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
3 Standorte	Cd Boden	0,2	0,2	0,1	0,3	25	Litt(OI IIIII)	Err(Or max)
	Cd_Sediment	0,2	0,2	0,1	0,5	10		
	Cd_Sediment_Ton	0,3	0,3	0,2	0,4	9		
	Cd_Hochwasser_Ton	0,4	0,4	0,3	0,5	3	0.40	4.00
	ER(Cd) ER(Cd_Ton_HW)	1,17 2,19	0,97 2,13	0,97 2,36	1,25 2,42		0,42	4,09
	ER(Cd_Ton_Sediment)							
	EK(Ca_ron_Seannent)	1,58	1,39	1,14	1,93			
	EK(Ca_ron_Seament)	1,56	1,39	1,14	1,93			
Hahanlaha	, – – ,		·	·	·	Anzobi	ED(CDmin)	ED(CDmax)
Hohenlohe 4 Standorta	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Hohenlohe 4 Standorte	Cd Cd_Boden	Mittelwert 0,24	Median 0,20	Min 0,15	Max 0,67	Anzahl 49 12	ER(GPmin)	ER(GPmax)
	Cd	Mittelwert	Median	Min	Max	49	ER(GPmin)	ER(GPmax)
	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton	Mittelwert 0,24 0,30 0,28 0,34	Median 0,20 0,22 0,24 0,33	Min 0,15 0,15 0,14 0,20	Max 0,67 1,27 0,94 0,42	49 12	, ,	, ,
	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,24 0,30 0,28 0,34 1,29	Median 0,20 0,22 0,24 0,33 1,08	Min 0,15 0,15 0,14 0,20 0,92	Max 0,67 1,27 0,94 0,42 2,10	49 12 12	ER(GPmin)	ER(GPmax)
	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,24 0,30 0,28 0,34 1,29 1,45	Median 0,20 0,22 0,24 0,33 1,08 1,65	Min 0,15 0,15 0,14 0,20 0,92 1,29	Max 0,67 1,27 0,94 0,42 2,10 2,05	49 12 12	, ,	, ,
	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	0,24 0,30 0,28 0,34 1,29	Median 0,20 0,22 0,24 0,33 1,08	Min 0,15 0,15 0,14 0,20 0,92	Max 0,67 1,27 0,94 0,42 2,10	49 12 12	, ,	, ,
	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	0,24 0,30 0,28 0,34 1,29 1,45	Median 0,20 0,22 0,24 0,33 1,08 1,65	Min 0,15 0,15 0,14 0,20 0,92 1,29	Max 0,67 1,27 0,94 0,42 2,10 2,05	49 12 12	, ,	, ,
4 Standorte Albvorland	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment)	0,24 0,30 0,28 0,34 1,29 1,45 1,19	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69	49 12 12 6 6	, ,	, ,
4 Standorte	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden	0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26	49 12 12 6 6	0,22	8,47
4 Standorte Albvorland	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment)	0,24 0,30 0,28 0,34 1,29 1,45 1,19	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69	49 12 12 6 6 Anzahl 34 9	0,22	8,47
4 Standorte Albvorland	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28	49 12 12 6 6	0,22 ER(GPmin)	8,47
4 Standorte Albvorland	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58	49 12 12 6 6 Anzahl 34 9 9	0,22	8,47
4 Standorte Albvorland	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58 3,57	49 12 12 6 6 Anzahl 34 9 9	0,22 ER(GPmin)	8,47 ER(GPmax)
4 Standorte Albvorland	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd)	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58	49 12 12 6 6 Anzahl 34 9 9	0,22 ER(GPmin)	8,47 ER(GPmax)
4 Standorte Albvorland	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW)	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58 3,57	49 12 12 6 6 Anzahl 34 9 9	0,22 ER(GPmin)	8,47 ER(GPmax)
4 Standorte Albvorland 4 Standorte Oberschwaben	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54 0,86 Mittelwert	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25 1,15 Median	Min 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57 0,86	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,26 0,58 3,57 1,58	49 12 12 6 6 Anzahl 34 9 9 2	0,22 ER(GPmin)	8,47 ER(GPmax)
4 Standorte Albvorland 4 Standorte	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54 0,86 Mittelwert 0,22	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25 1,15 Median 0,20	Min 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57 0,86 Min 0,12	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58 3,57 1,58	49 12 12 6 Anzahl 34 9 9 2 Anzahl 24	0,22 ER(GPmin) 0,02	8,47 ER(GPmax) 7,00
4 Standorte Albvorland 4 Standorte Oberschwaben	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54 0,86 Mittelwert 0,22 0,24	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25 1,15 Median 0,20 0,24	Min 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57 0,86 Min 0,12 0,14	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58 3,57 1,58	49 12 12 6 Anzahl 34 9 9 2 Anzahl 24 5	0,22 ER(GPmin) 0,02	8,47 ER(GPmax) 7,00
4 Standorte Albvorland 4 Standorte Oberschwaben	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54 0,86 Mittelwert 0,22	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25 1,15 Median 0,20	Min 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57 0,86 Min 0,12	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58 3,57 1,58	49 12 12 6 Anzahl 34 9 9 2 Anzahl 24	0,22 ER(GPmin) 0,02	8,47 ER(GPmax) 7,00
4 Standorte Albvorland 4 Standorte Oberschwaben	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_Sediment) Cd Cd Cd_Boden Cd_Sediment Cd_Sediment Cd_Sediment Cd_Ton_Sediment)	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54 0,86 Mittelwert 0,22 0,24 0,31 0,57 1,09	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25 1,15 Median 0,20 0,24 0,30 0,57 1,23	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57 0,86 Min 0,12 0,14 0,21 0,35 1,11	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58 3,57 1,58 Max 0,61 0,30 0,43 0,79 1,35	49 12 12 6 Anzahl 34 9 9 2 Anzahl 24 5 5	0,22 ER(GPmin) 0,02	8,47 ER(GPmax) 7,00
4 Standorte Albvorland 4 Standorte Oberschwaben	Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_HW) ER(Cd_Ton_Sediment) Cd Cd_Boden Cd_Sediment Cd_Sediment_Ton Cd_Hochwasser_Ton ER(Cd) ER(Cd_Ton_Sediment) Cd Cd_Goden Cd_Sediment Cd_Sediment Cd_Sediment	Mittelwert 0,24 0,30 0,28 0,34 1,29 1,45 1,19 Mittelwert 0,19 0,15 0,17 0,50 0,79 2,54 0,86 Mittelwert 0,22 0,24 0,31 0,57	Median 0,20 0,22 0,24 0,33 1,08 1,65 1,19 Median 0,15 0,15 0,18 0,50 0,97 3,25 1,15 Median 0,20 0,24 0,30 0,57	Min 0,15 0,15 0,14 0,20 0,92 1,29 0,83 Min 0,04 0,03 0,00 0,33 0,57 1,57 0,86 Min 0,12 0,14 0,21 0,35	Max 0,67 1,27 0,94 0,42 2,10 2,05 1,69 Max 1,26 0,28 0,26 0,66 1,58 3,57 1,58 Max 0,61 0,30 0,43 0,79	49 12 12 6 Anzahl 34 9 9 2 Anzahl 24 5 5	0,22 ER(GPmin) 0,02 ER(GPmin)	8,47 ER(GPmax) 7,00 ER(GPmax)

Baden- Württemberg	Cd	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
13 Standorte	Cd Boden	0,21	0,19	0,04	1,26	132	1- 1	, , , ,
	Cd_Sediment	0,23	0,20	0,03	1,27	36		
	Cd_Sediment_Ton	0,26	0,24	0,00	0,94	35		
	Cd_Hochwasser_Ton	0,45	0,44	0,20	0,79	13		
	ER(Cd)	1,09	1,04	0,57	1,11		0,02	31,75
Kraichgau	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Eichtersheim (EIC)	Cr_Boden	28	27	21	39	10		
	Cr_Sediment Cr_Sediment_Ton	35 43	32 43	30 35	44 53	4 4		
	Cr_Hochwasser_Ton	Kein HW	43	33	55	4		
	ER(Cr)	1,25	1,20	1,46	1,14		0,78	2,13
	ER(Cr_Ton_HW)	Kein HW	,	•	•		•	,
	ER(Cr_Ton_Sediment)	1,56	1,60	1,69	1,35			
	C -	Mittalwant	Modian	M:	May	Annahi	ED/CD-:-\	ED/CDmax
Grombach (GRO)	Cr Cr Boden	Mittelwert 40	Median 43	Min 21	Max 51	Anzahl 9	ER(GPmin)	ER(GPmax)
Sionibacii (GNO)	Cr Sediment	41	43	33	45	4		
	Cr_Sediment_Ton	81	79	77	87	4		
	Cr_Hochwasser_Ton	48	48	47	49	2		
	ER(Cr)	1,02	1,00	1,57	0,87		0,65	2,10
	ER(Cr_Ton_HW)	1,19	1,12	2,20	0,96			
	ER(Cr_Ton_Sediment)	2,00	1,85	3,63	1,70			
	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Babstadt (BAB)	Cr_Boden	63	57	38	100	6		
	Cr_Sediment	48	48	34	62	2		
	Cr_Sediment_Ton Cr_Hochwasser_Ton	47 41	47 41	47 41	47 41	1 1		
	ER(Cr)	0,76	0,84	0,89	0,62	1	0,34	1,61
	ER(Cr Ton HW)	0,65	0,72	1,07	0,41		0,04	1,01
	ER(Cr_Ton_Sediment)	0,74	0,83	1,22	0,47			
Hohenlohe	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Neuenstein (NEU)	Cr_Boden	36 46	32	20	54 51	17		
	Cr_Sediment	46 36	49 36	38 32	51 40	3 3		
	Cr_Sediment_Ton Cr_Hochwasser_Ton	47	36 39	34	68	3		
	ER(Cr)	1,29	1,53	1,94	0,95	· ·	0,71	2,60
	ER(Cr_Ton_HW)	1,32	1,22	1,72	1,27		•	,
	ER(Cr_Ton_Sediment)	1,01	1,13	1,62	0,74			
Dame dala secono	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Berndshausen (BER)	Cr_Boden Cr_Sediment	30 54	29 52	22 44	42 71	11 4		
(DEN)	Cr Sediment Ton	32	32	29	35	4		
	Cr_Hochwasser_Ton	55	55	55	55	1		
	ER(Cr)	1,84	1,80	2,04	1,69	•	1,05	3,29
	ER(Cr_Ton_HW)	1,85	1,92	2,55	1,31			
	ER(Cr_Ton_Sediment)	1,08	1,13	1,33	0,83			
	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Hermuthausen	Cr_Boden	34	33	22	47	7		

(HER)	Cr_Sediment Cr_Sediment_Ton Cr_Hochwasser_Ton ER(Cr) ER(Cr_Ton_HW) ER(Cr_Ton_Sediment)	45 35 30 1,34 0,89 1,04	45 35 30 1,37 0,91 1,06	45 32 30 2,07 1,38 1,48	45 38 30 0,97 0,64 0,80	2 2 1	0,96	2,10
	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Seidelklingen (SEI)	Cr_Boden	31	28	22	52	14		
	Cr_Sediment Cr Sediment Ton	39 30	38 31	38 28	40 31	3 3		
	Cr_Hochwasser_Ton	35	35	35	35	1		
	ER(Cr) ER(Cr_Ton_HW)	1,24 1,13	1,36 1,26	1,75 1,62	0,77 0,68		0,73	1,84
	ER(Cr_Ton_Sediment)	0,96	1,10	1,29	0,59			
Albvorland	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Haigerloch-	Cr_Boden	21	22	19	24	8		
Weildorf (HAI)	Cr_Sediment Cr_Sediment_Ton	39 51	39 51	29 43	49 59	2 2		
	Cr_Hochwasser_Ton	30	30	30	30	1	4.47	0.00
	ER(Cr) ER(Cr Ton HW)	1,80 1,41	1,78 1,40	1,52 1,61	2,00 1,24		1,17	2,60
	ER(Cr_Ton_Sediment)	2,38	2,36	2,32	2,42			
	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grosselfingen (GRS)	Cr_Boden	31	31	22	39	10	(•)	
	Cr_Sediment Cr_Sediment_Ton	52 32	52 32	31 32	73 33	2 2		
	Cr_Hochwasser_Ton	25	25	25	25	1		
	ER(Cr) ER(Cr_Ton_HW)	1,69 0,81	1,68 0,80	1,41 1,14	1,86 0,63		0,78	3,35
	ER(Cr_Ton_Sediment)	1,06	1,05	1,14	0,84			
	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Spaichingen (SPA)	Cr_Boden	55	53	38	74	5		
	Cr_Sediment Cr_Sediment_Ton	77 37	77 38	76 25	77 48	3 3		
	Cr_Hochwasser_Ton	Kein HW	4.45	4.00	4.05		4.00	0.04
	ER(Cr) ER(Cr_Ton_HW)	1,39 Kein HW	1,45	1,99	1,05		1,02	2,04
	ER(Cr_Ton_Sediment)	0,67	0,72	0,66	0,65			
	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg Parkplatz	Cr_Boden Cr_Sediment	54 32	54	53	55	3		
Parkpiatz	Cr_Sediment_Ton	32 38	32 38	32 38	32 38	1 1		
	Cr_Hochwasser_Ton	Kein HW	0.00	0.04	0.50		0.50	0.04
	ER(Cr) ER(Cr_Ton_HW)	0,60 Kein HW	0,60	0,61	0,59		0,59	0,61
	ER(Cr_Ton_Sediment)	0,71	0,72	0,72	0,70			
	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Cr_Boden	57 25	57 25	55 25	58 25	2		
Schwimmbad	Cr_Sediment Cr_Sediment_Ton	35 47	35 47	35 47	35 47	1 1		
	Cr_Hochwasser_Ton	Kein HW					0.00	0.00
	ER(Cr) ER(Cr_Ton_HW)	0,62 Kein HW	0,62	0,63	0,60		0,60	0,63

ER(Cr_Ton_Sediment) 0,82 0,82 0,84 0,80

	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Gunningen (GUN)	Cr_Boden	30	28	20	48	11		
	Cr_Sediment	65	65	61	69	2		
	Cr_Sediment_Ton	42	42	35	49	2		
	Cr_Hochwasser_Ton	Kein HW	0.00	2.04	4 44		4.00	2.42
	ER(Cr) ER(Cr_Ton_HW)	2,13	2,28	3,01	1,44		1,26	3,43
	ER(Cr_Ton_Sediment)	Kein HW 1,38	1,48	1,75	1,01			
	Lit(Oi_ioii_ocaiiiciit)	1,50	1,40	1,75	1,01			
Oh ama ahasaah asa	^ -	Market and the second	N# 11			A 1- 1	ED(0D!)	ED(0D)
Oberschwaben	<u>Cr</u>	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Fleischwangen (FLE)	Cr_Boden Cr Sediment	24 27	26 27	19 21	29 34	11 2		
(1 LL)	Cr_Sediment_Ton	38	38	35	41	2		
	Cr_Hochwasser_Ton	32	32	32	32	1		
	ER(Cr)	1,13	1,07	1,14	1,17		0,73	1,82
	ER(Cr_Ton_HW)	1,31	1,23	1,71	1,10			
	ER(Cr_Ton_Sediment)	1,57	1,47	1,89	1,41			
	_							
Mittaloudand (MIT)	Cr. Barlan	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Mittelurbach (MIT)	Cr_Boden Cr Sediment	41 41	41 45	23 31	63 48	13 3		
	Cr_Sediment_Ton	51	56	30	68	3		
	Cr_Hochwasser_Ton	26	26	26	26	1		
	ER(Cr)	1,00	1,10	1,34	0,76		0,49	2,06
	ER(Cr_Ton_HW)	0,64	0,64	1,14	0,42			
	ER(Cr_Ton_Sediment)	1,25	1,37	1,31	1,08			
Kraiah sau	0	Mittalinant	Madian	N#:	Mass	Aussel	ED/ODmin)	ED/CD
Kraichgau 3 Standorte	Cr Cr Boden	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
3 Standorte	Cr_Boden Cr_Sediment	44 41	43 43	21 30	100 62	25 10		
	Cr_Sediment_Ton	57	47	35	87	9		
	Cr_Hochwasser_Ton	44	44	41	49	3		
	ER(Cr)	0,94	1,00	0,84	1,20		0,31	2,96
	ER(Cr_Ton_HW)	1,01	1,04	0,72	1,12			
	ER(Cr_Ton_Sediment)	1,30	1,10	0,83	1,85			
Hohenlohe	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Cr_Boden	33	30	20	54	49	. ,	,
	Cr_Sediment	46	47	38	71	12		
	Cr_Sediment_Ton	33	34	28	40	12		
	Cr_Hochwasser_Ton	42	37	30	68	6	0.74	0.50
	ER(Cr) ER(Cr_Ton_HW)	1,42	1,55	1,36	1,80		0,71	3,59
	ER(Cr_Ton_Sediment)	1,28 1,02	1,23 1,11	0,91 1,06	1,92 1,13			
	(eeeeae,	.,02	.,	.,00	.,			
Albvorland	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Cr_Boden	34	30	19	74	34		
	Cr_Sediment	58	58	29	77 50	9		
	Cr_Sediment_Ton	41 27	40 27	25 25	59 30	9		
	Cr_Hochwasser_Ton ER(Cr)	27 1,68	27 1,97	25 1,45	30 1,78	2	0,39	4,14
	ER(Cr_Ton_HW)	0,80	0,93	0,80	1,70		0,00	7,17
	ER(Cr_Ton_Sediment)	1,18	1,35	0,72	2,36			
	. – ,	•	•	•	•			
Oberschwaben	Cr	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)

2 Standorte Baden-Württemberg 13 Standorte	Cr_Boden Cr_Sediment Cr_Sediment_Ton Cr_Hochwasser_Ton ER(Cr) ER(Cr_Ton_HW) ER(Cr_Ton_Sediment) Cr Cr_Boden Cr_Sediment Cr_Sediment_Ton Cr_Hochwasser_Ton ER(Cr)	33 34 45 29 1,05 0,89 1,36 Mittelwert 36 45 44 36 1,25	33 36 47 29 1,09 0,87 1,41 Median 32 45 43 33 1,41	19 21 30 26 1,07 0,64 1,37 Min 19 21 25 25 0,84	63 48 68 32 1,10 1,23 1,47 Max 100 77 87 68 1,45	24 5 5 2 Anzahl 132 36 35 13	0,34 ER(GPmin) 0,21	2,58 ER(GPmax) 4,18
Kraichgau Eichtersheim (EIC)	Cu Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	Mittelwert 13 14 34 Kein HW 1,06 Kein HW 2,65	Median 14 14 33 1,03 2,41	Min 9 12 30 1,38 3,34	Max 15 15 41 0,99 2,78	Anzahl 10 4 4	ER(GPmin) 0,84	ER(GPmax) 1,62
Grombach (GRO)	Cu Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	16 17 41 38 1,07 2,34 2,53	Median 17 17 40 38 1,02 2,26 2,42	Min 11 15 39 34 1,33 2,94 3,38	Max 23 20 43 41 0,86 1,81 1,89	9 4 4 2	ER(GPmin) 0,67	ER(GPmax) 1,71
Babstadt (BAB)	Cu Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu)	17 17 17 34 30,5 1,02	Median 17 17 34 30,5 1,01	Min 12 16 34 30,5 1,37	Max 24 18 34 30,5 0,76	Anzahl 6 2 1	ER(GPmin) 0,68	ER(GPmax) 1,55
Hohenlohe Neuenstein (NEU)	ER(Cu_Ton_HW) ER(Cu_Ton_Sediment) Cu Cu_Boden Cu_Sediment Cu_Sediment Cu_Sediment_Ton	1,80 2,01 Mittelwert 19 19 27	1,77 1,98 Median 18 20 27	2,56 2,86 Min 11 16 25	1,27 1,41 Max 31 22 29	Anzahl 17 3 3	ER(GPmin)	ER(GPmax)
Dam deli susses	Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment) Cu	33 1,02 1,73 1,41 Mittelwert	32 1,15 1,80 1,51 Median	29 1,50 2,64 2,33	39 0,71 1,27 0,93	3 Anzahl	0,52 ER(GPmin)	2,04 ER(GPmax)
Berndshausen (BER)	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton	15 20 24 40	14 20 23 40	12 17 16 40	19 23 32 40	11 4 4 1		

	ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	1,32 2,61 1,56	1,41 2,76 1,63	1,39 3,26 1,32	1,19 2,07 1,68		0,88	1,87
	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Hermuthausen (HER)	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	15 17 27 10 1,13 0,67 1,75	15 17 27 10 1,13 0,67 1,75	11 15 24 10 1,45 0,97 2,26	21 19 30 10 0,89 0,48 1,38	7 2 2 1	0,71	1,81
	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Seidelklingen (SEI)	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	20 27 37 36 1,37 1,78 1,86	19 27 38 36 1,45 1,89 2,03	8 27 35 36 3,61 4,73 4,69	39 28 38 36 0,70 0,90 0,97	14 3 3 1	0,69	3,67
Albvorland	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Haigerloch- Weildorf (HAI)	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	15 25 29 34 1,64 2,19 1,87	14 25 29 34 1,76 2,35 2,00	12 22 27 34 1,94 2,91 2,35	21 28 30 34 1,36 1,63 1,47	8 2 2 1	1,09	2,42
	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grosselfingen (GRS)	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	29 26 27 24 0,89 0,84 0,93	28 26 27 24 0,91 0,86 0,95	19 18 25 24 0,93 1,25 1,28	44 34 29 24 0,77 0,56 0,66	10 2 2 1	0,42	1,73
	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Spaichingen (SPA)	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	13 23 23 Kein HW 1,72 Kein HW 1,74	11 23 24 2,03 2,15	11 21 20 2,01 1,88	17 24 24 1,41 1,45	5 3 3	1,26	2,26
	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg Parkplatz	Cu_Boden Cu_Sediment	15 23	16 23	14 23	16	3 1		
Γαι κ μιαι ζ	Cu_Sediment_Ton	23	23	23 23	23 23	1		
	Cu_Hochwasser_Ton ER(Cu)	Kein HW 1,52	1,48	1,68	1,42		1,42	1,68

	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Cu_Boden	14	14	13	14	2		
Schwimmbad	Cu_Sediment	23	23	23	23	1		
	Cu_Sediment_Ton	23	23	23	23	1		
	Cu_Hochwasser_Ton	Kein HW						
	ER(Cu)	1,66	1,66	1,71	1,61		1,61	1,71
	ER(Cu_Ton_HW)	Kein HW	4.00	4 74	4.04			
	ER(Cu_Ton_Sediment)	1,66	1,66	1,71	1,61			
	_							
	<u>Cu</u>	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Gunningen (GUN)	Cu_Boden	13	13	10	21	11		
	Cu_Sediment Cu Sediment Ton	18 23	18 23	16 19	20 26	2 2		
	Cu_Hochwasser_Ton	Kein HW	23	19	20	2		
	ER(Cu)	1,38	1,45	1,69	0,99		0,78	2,15
	ER(Cu_Ton_HW)	Kein HW	1,10	1,00	0,00		0,70	2,10
	ER(Cu_Ton_Sediment)	1,70	1,79	2,00	1,26			
	, – – ,							
Oberschwaben	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Fleischwangen	Cu_Boden	13	13	10	16	11	•	•
(FLE)	Cu_Sediment	13	13	11	15	2		
` ,	Cu_Sediment_Ton	36	36	33	39	2		
	Cu_Hochwasser_Ton	31	31	31	31	1		
	ER(Cu)	0,98	0,98	1,15	0,89		0,68	1,51
	ER(Cu_Ton_HW)	2,36	2,36	3,21	1,90			
	ER(Cu_Ton_Sediment)	2,72	2,72	3,40	2,36			
BALLIA LANDA - LA (BALT)	<u>Cu</u>	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Mittelurbach (MIT)	Cu_Boden	12 15	12 17	8	15 17	13		
	Cu_Sediment	15 26	17	12	17	3		
	Cu_Sediment_Ton	36	38	29	40	3		
	Cu_Hochwasser_Ton ER(Cu)	26	26 1,37	26 1,49	26 1.10	1	0,77	2.14
	ER(Cu_Ton_HW)	1,28 2,16	2,09	3,25	1,10 1,68		0,77	2,14
	ER(Cu_Ton_Sediment)	2,10	3,11	3,62	2,61			
	Liviou_ron_ocument)	2,55	3,11	3,02	2,01			
Kraichgau	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
3 Standorte	Cu_Boden	15	17	9	24	25		
	Cu_Sediment	16	17	12	20	10		
	Cu_Sediment_Ton	36	34	30	43	9		
	Cu_Hochwasser_Ton	34	34	31	41	3		
	ER(Cu)	1,05	1,02	1,01	1,03		0,51	2,17
	ER(Cu_Ton_HW)	2,23	2,05	1,77	2,26			
	ER(Cu_Ton_Sediment)	2,37	2,05	1,98	2,42			
Hohenlohe								
1101101110110	Cu	Mittelwert	Median	Min	Max	Anzahl	FR(GPmin)	FR(GPmax)
4 Standorte	Cu Boden	Mittelwert	Median 16	Min	Max 30	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Cu_Boden	17	16	8	39	49	ER(GPmin)	ER(GPmax)
4 Standorte	Cu_Boden Cu_Sediment	17 21	16 20	8 15	39 28	49 12	ER(GPmin)	ER(GPmax)
4 Standorte	Cu_Boden Cu_Sediment Cu_Sediment_Ton	17 21 29	16 20 27	8 15 16	39 28 38	49	ER(GPmin)	ER(GPmax)
4 Standorte	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton	17 21 29 30	16 20 27 34	8 15 16 10	39 28 38 40	49 12 12	. , ,	, ,
4 Standorte	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu)	17 21 29 30 1,21	16 20 27 34 1,24	8 15 16 10 1,13	39 28 38 40 1,45	49 12 12	0,39	ER(GPmax) 3,67
4 Standorte	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton	17 21 29 30	16 20 27 34	8 15 16 10	39 28 38 40	49 12 12	. , ,	, ,
4 Standorte	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW)	17 21 29 30 1,21 1,71	16 20 27 34 1,24 2,05	8 15 16 10 1,13 0,67	39 28 38 40 1,45 2,76	49 12 12	. , ,	, ,
	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	17 21 29 30 1,21 1,71 1,65	16 20 27 34 1,24 2,05 1,62	8 15 16 10 1,13 0,67 1,51	39 28 38 40 1,45 2,76 2,03	49 12 12 6	0,39	3,67
Albvorland	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	17 21 29 30 1,21 1,71 1,65	16 20 27 34 1,24 2,05 1,62	8 15 16 10 1,13 0,67 1,51	39 28 38 40 1,45 2,76 2,03	49 12 12 6 6	. , ,	, ,
	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment) Cu Cu_Boden	17 21 29 30 1,21 1,71 1,65 Mittelwert	16 20 27 34 1,24 2,05 1,62 Median	8 15 16 10 1,13 0,67 1,51 Min	39 28 38 40 1,45 2,76 2,03	49 12 12 6 6	0,39	3,67
Albvorland	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	17 21 29 30 1,21 1,71 1,65	16 20 27 34 1,24 2,05 1,62	8 15 16 10 1,13 0,67 1,51	39 28 38 40 1,45 2,76 2,03	49 12 12 6 6	0,39	3,67

	Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	29 1,30 1,64 1,43	29 1,79 2,15 1,90	24 0,91 0,86 0,95	34 2,03 2,35 2,15	2	0,37	3,53
Oberschwaben	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
2 Standorte	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu) ER(Cu_Ton_HW) ER(Cu_Ton_Sediment)	13 14 36 28 1,12 2,27 2,85	13 15 37 28 1,16 2,23 2,90	8 11 29 26 0,98 2,09 2,72	16 17 40 31 1,37 2,36 3,11	24 5 5 2	0,68	2,14
Baden-Württemberg	Cu	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
13 Standorte	Cu_Boden Cu_Sediment Cu_Sediment_Ton Cu_Hochwasser_Ton ER(Cu)	16 19 31 30 1,18	15 19 30 31 1,25	8 11 16 10 0,91	44 34 43 41 1,13	132 36 35 13	0,26	4,47
Kraichgau	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Eichtersheim (EIC)	Ni_Boden Ni_Sediment	24 26	23 25	20 23	30 32	10 4		
	Ni_Sediment_Ton Ni_Hochwasser_Ton ER(Ni)	40 Kein HW 1,10	40	33 1,15	46 1,06	4	0,75	1,61
	ER(Ni_Ton_HW) ER(Ni_Ton_Sediment)	Kein HW 1,67	1,71	1,66	1,54		•	•
	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grombach (GRO)	Ni_Boden Ni_Sediment Ni_Sediment_Ton Ni_Hochwasser_Ton ER(Ni) ER(Ni_Ton_HW) ER(Ni_Ton_Sediment)	34 32 62 51 0,93 1,49 1,84	33 33 63 51 0,98 1,52 1,87	17 27 58 50 1,56 2,93 3,36	51 34 66 51 0,67 1,00 1,30	9 4 4 2	0,53	1,99
D 1 (1/(DAD)	Ni Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Babstadt (BAB)	Ni_Boden Ni_Sediment Ni_Sediment_Ton Ni_Hochwasser_Ton ER(Ni) ER(Ni_Ton_HW) ER(Ni_Ton_Sediment)	41 41 50 40 1,00 0,97 1,21	40 41 50 40 1,02 1,00 1,24	26 32 50 40 1,25 1,53 1,91	57 50 50 40 0,87 0,70 0,87	6 2 1 1	0,57	1,91
Hohenlohe	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Neuenstein (NEU)	Ni_Boden Ni_Sediment Ni_Sediment_Ton Ni_Hochwasser_Ton ER(Ni) ER(Ni_Ton_HW) ER(Ni_Ton_Sediment)	27 29 30 42 1,08 1,55 1,09	28 29 29 42 1,06 1,53 1,07	16 26 28 34 1,66 2,20 1,80	40 33 32 50 0,83 1,24 0,79	17 3 3 3	0,64	2,15

	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Berndshausen	Ni Boden	24	22	16	40	11	LIN(OI IIIII)	LIN(OI IIIax)
(BER)	Ni_Sediment	42	43	32	50	4		
(BEIT)	Ni_Sediment_Ton	35	34	32	38	4		
	Ni_Hochwasser_Ton	63	63	63	63	1		
	ER(Ni)	1,79	2,00	1,99	1,25	•	0,78	3,16
	ER(Ni_Ton_HW)	2,66	2,88	3,94	1,55		0,70	0,10
	ER(Ni_Ton_Sediment)	1,47	1,59	2,00	0,93			
		.,	1,00	2,00	0,00			
	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Hermuthausen	Ni Boden	25	25	15	38	7	, ,	
(HER)	Ni_Sediment	29	29	29	30	2		
` ,	Ni_Sediment_Ton	30	30	28	33	2		
	Ni_Hochwasser_Ton	39	39	39	39	1		
	ER(Ni)	1,16	1,18	1,94	0,78		0,76	2,01
	ER(Ni_Ton_HW)	1,55	1,57	2,63	1,03			
	ER(Ni_Ton_Sediment)	1,21	1,23	1,92	0,86			
	Ni Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Seidelklingen (SEI)	Ni_Boden	35	34	16	56	14		
	Ni_Sediment	34	34	34	34	3		
	Ni_Sediment_Ton	35	36	33	36	3		
	Ni_Hochwasser_Ton	49	49	49	49	1	0.00	0.44
	ER(Ni)	0,98	1,01	2,10	0,62		0,62	2,11
	ER(Ni_Ton_HW)	1,42	1,45	3,03	0,89			
	ER(Ni_Ton_Sediment)	1,00	1,05	2,01	0,65			
Albvorland	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Haigerloch-	Ni Boden	25	24	18	35	8	EK(GFIIIII)	EN(GFIIIax)
Weildorf (HAI)	Ni Sediment	25 44	24 44	42	35 45	2		
Welldon (HAI)	Ni_Sediment_Ton	44 47	44 47	38	56	2		
	Ni_Hochwasser_Ton	47 45	45	45	45	1		
	ER(Ni)	1,77	1,85	2,42	1,31	•	1,23	2,58
	ER(Ni_Ton_HW)	1,83	1,91	2,58	1,31		1,20	2,00
	ER(Ni_Ton_Sediment)	1,90	1,98	2,15	1,62			
	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grosselfingen (GRS)	Ni_Boden	58	50	25	104	10		
	Ni_Sediment	44	44	21	66	2		
	Ni_Sediment_Ton	34	34	33	36	2		
	Ni_Hochwasser_Ton	34	34	34	34	1		
	ER(Ni)	0,75	0,86	0,86	0,63		0,21	2,64
	ER(Ni_Ton_HW)	0,59	0,68	1,38	0,33			
	ER(Ni_Ton_Sediment)	0,59	0,68	1,32	0,34			
	Ni	Mittolwort	Median	Min	May	Anzohl	ED/GDmin\	ED/GPmov\
Spaichingen (SDA)	Ni_Boden	Mittelwert 29	26	Min 21	Max 39	Anzahl 5	ER(GPmin)	ER(GPmax)
Spaichingen (SPA)	Ni_Sediment	29 42	26 42	40	39 44	3		
	Ni_Sediment_Ton	22	22	15	27	3		
	Ni_Hochwasser_Ton	Kein HW	~~	13	۷1	J		
	ER(Ni)	1,43	1,60	1,90	1,15		1,03	2,10
	ER(Ni_Ton_HW)	Kein HW	1,00	1,50	1,10		1,00	۷,۱۰
	ER(Ni_Ton_Sediment)	0,74	0,86	0,73	0,70			
	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Ni_Boden	31	29	24	39	3		
		-	-			-		

Parkplatz	Ni_Sediment Ni_Sediment_Ton Ni_Hochwasser_Ton ER(Ni) ER(Ni_Ton_HW) ER(Ni_Ton_Sediment)	38 37 Kein HW 1,25 Kein HW 1,22	38 37 1,33 1,29	38 37 1,61 1,57	38 37 0,98 0,95	1 1	0,98	1,61
	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Ni Boden	28	28	25	32	2	Litt(OI IIIII)	ER(OI max)
Schwimmbad	Ni_Sediment	34	34	34	34	1		
	Ni_Sediment_Ton Ni_Hochwasser_Ton	39 Kein HW	39	39	39	1		
	ER(Ni)	1,21	1,21	1,40	1,06		1,06	1,40
	ER(Ni_Ton_HW)	Kein HW	1.26	1 50	1.10			
	ER(Ni_Ton_Sediment)	1,36	1,36	1,58	1,19			
	Ni Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Gunningen (GUN)	Ni_Boden Ni_Sediment	20 40	17 40	15 39	36 42	11 2		
	Ni_Sediment_Ton	28	28	27	29	2		
	Ni_Hochwasser_Ton	Kein HW	2.20	2.64	1 15		1.06	0.05
	ER(Ni) ER(Ni_Ton_HW)	2,03 Kein HW	2,30	2,64	1,15		1,06	2,85
	ER(Ni_Ton_Sediment)	1,41	1,60	1,86	0,79			
Oberschwaben	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Fleischwangen	Ni_Boden	14	14	10	19	11	2.1(0)	zit(e: max)
(FLE)	Ni_Sediment	20	20	19	22	2		
	Ni_Sediment_Ton Ni_Hochwasser_Ton	28 37	28 37	26 37	30 37	2 1		
	ER(Ni)	1,39	1,41	1,80	1,17		1,01	2,08
	ER(Ni_Ton_HW) ER(Ni_Ton_Sediment)	2,53 1,92	2,56 1,94	3,52 2,45	1,98 1,62			
	(.,0=	.,	_, .0	.,02			
Mittelurbach (MIT)	Ni_Ni_Boden	Mittelwert 23	Median 21	<u>Min</u> 17	Max 37	Anzahl 13	ER(GPmin)	ER(GPmax)
witterurbacii (wiri)	Ni_Sediment	23 27	28	20	32	3		
	Ni_Sediment_Ton	36	39	24	47	3		
	Ni_Hochwasser_Ton ER(Ni)	24 1,14	24 1,29	24 1,21	24 0,87	1	0,55	1,89
	ER(Ni_Ton_HW)	1,05	1,15	1,45	0,67		-,	,
	ER(Ni_Ton_Sediment)	1,55	1,82	1,40	1,27			
Kraichgau	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
3 Standorte	Ni_Boden Ni_Sediment	33 33	33 33	17 23	57 50	25 10		
	Ni_Sediment_Ton	51	50	33	66	9		
	Ni_Hochwasser_Ton	45 1,00	45	40	51	3	0.40	2 00
	ER(Ni) ER(Ni_Ton_HW)	1,38	0,98 1,36	0,98 1,00	1,08 1,52		0,40	2,88
	ER(Ni_Ton_Sediment)	1,54	1,49	1,24	1,87			
Hohenlohe	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Ni_Boden	28	26	15	56	49	, - ····· <i>y</i>	(=)
	Ni_Sediment Ni_Sediment_Ton	34 32	32 32	26 28	50 38	12 12		
	Ni_Hochwasser_Ton	48	46	34	63	6		
	ER(Ni)	1,22	1,22	1,01	2,00		0,46	3,41
	ER(Ni_Ton_HW)	1,74	1,76	1,45	2,88			

ER(Ni_Ton_Sediment) 1,17 1,24 1,05 1,59

Albvorland	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Ni_Boden	33	25	15	104	34		
	Ni_Sediment	42	43	21	66	9		
	Ni_Sediment_Ton	33	31	15	56	9		
	Ni_Hochwasser_Ton	40	40	34	45	2		
	ER(Ni)	1,29	1,71	0,86	1,85		0,21	4,50
	ER(Ni_Ton_HW)	1,21	1,60	0,68	1,91			
	ER(Ni_Ton_Sediment)	0,99	1,25	0,68	1,98			
Oberschwaben	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
2 Standorte	Ni Boden	19	18	10	37	24	LIX(OI IIIII)	LIN(GI IIIAX)
2 Staridorte	Ni_Sediment	23	24	19	32	5		
	Ni_Sediment_Ton	32	33	24	47	5		
	Ni_Hochwasser_Ton	31	31	24	37	2		
	ER(Ni)	1,23	1,34	1,29	1,41		0,51	3,06
	ER(Ni_Ton_HW)	1,61	1,71	1,15	2,56			
	ER(Ni_Ton_Sediment)	1,69	1,87	1,82	1,94			
Baden-Württemberg	Ni	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
13 Standorte	Ni_Boden	28	25	10	104	132		_
	Ni_Sediment	33	32	19	66	36		
	Ni_Sediment_Ton	37	33	15	66	35		
	Ni_Hochwasser_Ton	41	43	24	63	13	0.40	0.00
	ER(Ni)	1,18	1,27	0,86	1,29		0,18	6,32
							55/65 · \	55/65 \
Kraichgau	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Kraichgau Eichtersheim (EIC)	Pb_Boden	17	17	13	20	10	ER(GPmin)	ER(GPmax)
•	Pb_Boden Pb_Sediment	17 21	17 21	13 19	20 23	10 4	ER(GPmin)	ER(GPmax)
•	Pb_Boden Pb_Sediment Pb_Sediment_Ton	17 21 37	17	13	20	10	ER(GPmin)	ER(GPmax)
•	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton	17 21 37 Kein HW	17 21 36	13 19	20 23	10 4	ER(GPmin)	ER(GPmax)
•	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW)	17 21 37 Kein HW 1,20 Kein HW	17 21 36 1,22	13 19 29 1,47	20 23 48 1,14	10 4	,	
•	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb)	17 21 37 Kein HW 1,20	17 21 36	13 19 29	20 23 48	10 4	,	
•	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW)	17 21 37 Kein HW 1,20 Kein HW	17 21 36 1,22	13 19 29 1,47	20 23 48 1,14	10 4	,	
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	17 21 37 Kein HW 1,20 Kein HW 2,18	17 21 36 1,22 2,16	13 19 29 1,47 2,25	20 23 48 1,14 2,41	10 4 4 4	,	
•	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden	17 21 37 Kein HW 1,20 Kein HW 2,18	17 21 36 1,22 2,16 Median 21	13 19 29 1,47 2,25 Min 18	20 23 48 1,14 2,41 Max 31	10 4 4 4 Anzahi 9	0,95	1,74
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21	17 21 36 1,22 2,16 Median 21 20	13 19 29 1,47 2,25 Min 18 20	20 23 48 1,14 2,41 Max 31 23	10 4 4 4 Anzahl 9 4	0,95	1,74
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65	17 21 36 1,22 2,16 Median 21 20 65	13 19 29 1,47 2,25 Min 18 20 50	20 23 48 1,14 2,41 Max 31 23 80	10 4 4 4 Anzahl 9 4 4	0,95	1,74
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50	17 21 36 1,22 2,16 Median 21 20 65 50	13 19 29 1,47 2,25 Min 18 20 50 44	20 23 48 1,14 2,41 Max 31 23 80 56	10 4 4 4 Anzahl 9 4	0,95	1,74 ER(GPmax)
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89	17 21 36 1,22 2,16 Median 21 20 65 50 0,96	13 19 29 1,47 2,25 Min 18 20 50 44 1,12	20 23 48 1,14 2,41 Max 31 23 80 56 0,75	10 4 4 4 Anzahl 9 4 4	0,95	1,74
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb)	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50	17 21 36 1,22 2,16 Median 21 20 65 50	13 19 29 1,47 2,25 Min 18 20 50 44	20 23 48 1,14 2,41 Max 31 23 80 56	10 4 4 4 Anzahl 9 4 4	0,95	1,74 ER(GPmax)
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW)	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79	10 4 4 4 Anzahl 9 4 4	0,95	1,74 ER(GPmax)
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW)	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79	10 4 4 4 Anzahl 9 4 4	0,95	1,74 ER(GPmax)
Eichtersheim (EIC)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11 2,75	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34 3,05	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46 2,77	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79 2,56	10 4 4 4 9 4 4 2 Anzahl 6	0,95 ER(GPmin) 0,64	1,74 ER(GPmax) 1,30
Eichtersheim (EIC) Grombach (GRO)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11 2,75 Mittelwert 20 22	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34 3,05 Median 19 22	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46 2,77 Min 16 20	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79 2,56 Max 25 23	10 4 4 4 9 4 4 2 Anzahl 6 2	0,95 ER(GPmin) 0,64	1,74 ER(GPmax) 1,30
Eichtersheim (EIC) Grombach (GRO)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11 2,75 Mittelwert 20 22 37	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34 3,05 Median 19 22 37	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46 2,77 Min 16 20 37	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79 2,56 Max 25 23 37	10 4 4 4 9 4 4 2 Anzahl 6 2 1	0,95 ER(GPmin) 0,64	1,74 ER(GPmax) 1,30
Eichtersheim (EIC) Grombach (GRO)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Hochwaser_Ton ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11 2,75 Mittelwert 20 22 37 45	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34 3,05 Median 19 22 37 45	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46 2,77 Min 16 20 37 45	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79 2,56 Max 25 23 37 45	10 4 4 4 9 4 4 2 Anzahl 6 2	0,95 ER(GPmin) 0,64 ER(GPmin)	1,74 ER(GPmax) 1,30 ER(GPmax)
Eichtersheim (EIC) Grombach (GRO)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Hochwaser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb)	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11 2,75 Mittelwert 20 22 37 45 1,10	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34 3,05 Median 19 22 37 45 1,13	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46 2,77 Min 16 20 37 45 1,26	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79 2,56 Max 25 23 37 45 0,91	10 4 4 4 9 4 4 2 Anzahl 6 2 1	0,95 ER(GPmin) 0,64	1,74 ER(GPmax) 1,30
Eichtersheim (EIC) Grombach (GRO)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Hochwaser_Ton ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton	17 21 37 Kein HW 1,20 Kein HW 2,18 Mittelwert 24 21 65 50 0,89 2,11 2,75 Mittelwert 20 22 37 45	17 21 36 1,22 2,16 Median 21 20 65 50 0,96 2,34 3,05 Median 19 22 37 45	13 19 29 1,47 2,25 Min 18 20 50 44 1,12 2,46 2,77 Min 16 20 37 45	20 23 48 1,14 2,41 Max 31 23 80 56 0,75 1,79 2,56 Max 25 23 37 45	10 4 4 4 9 4 4 2 Anzahl 6 2 1	0,95 ER(GPmin) 0,64 ER(GPmin)	1,74 ER(GPmax) 1,30 ER(GPmax)

Hohenlohe	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Neuenstein (NEU)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	31 22 24 32 0,71 1,00 0,75	27 22 23 29 0,82 1,07 0,86	18 21 23 27 1,17 1,52 1,26	99 24 25 39 0,24 0,39 0,25	17 3 3 3 3	0,21	1,31
	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Berndshausen (BER)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	128 24 21 27 0,19 0,21 0,16	27 25 21 27 0,91 0,97 0,77	21 18 18 27 0,89 1,29 0,85	819 29 24 27 0,04 0,03 0,03	11 4 4 1	0,02	1,42
Harmithailean	Pb Pb Boden	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Hermuthausen (HER)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	23 21 20 28 0,91 1,19 0,85	23 21 20 28 0,94 1,23 0,87	22 21 19 28 0,94 1,26 0,85	27 22 21 28 0,83 1,05 0,78	7 2 2 1	0,78	1,00
	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Seidelklingen (SEI)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	32 19 22 30 0,60 0,93 0,69	26 20 22 30 0,78 1,17 0,87	21 18 19 30 0,85 1,43 0,91	114 20 25 30 0,18 0,27 0,22	14 3 2 1	0,16	0,95
Albvorland	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Haigerloch- Weildorf (HAI)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	20 21 24 28 1,02 1,39 1,18	20 21 24 28 1,04 1,41 1,20	16 20 22 28 1,23 1,73 1,36	25 21 26 28 0,85 1,12 1,02	8 2 2 1	0,79	1,32
	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grosselfingen (GRS)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	29 21 15 19 0,70 0,65 0,51	31 21 15 19 0,67 0,63 0,49	9 17 12 19 1,92 2,21 1,40	70 25 18 19 0,35 0,28 0,26	10 2 2 1	0,24	2,83
	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Spaichingen (SPA)	Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton	28 35 19 Kein HW	27 32 19	23 29 11	35 46 28	5 3 3		

	ER(Pb) ER(Pb_Ton_HW)	1,25 Kein HW	1,16	1,24	1,32		0,84	1,95
	ER(Pb_Ton_Sediment)	0,68	0,69	0,48	0,82			
	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Pb_Boden	27	27	21	31	3		
Parkplatz	Pb_Sediment Pb_Sediment_Ton	29 36	29 36	29 36	29 36	1 1		
	Pb_Hochwasser_Ton	Kein HW	00	00	00			
	ER(Pb)	1,07	1,04	1,36	0,91		0,91	1,36
	ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	Kein HW 1,35	1,31	1,71	1,14			
	(,	1,22	1,21	.,	.,			
	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg Schwimmbad	Pb_Boden Pb_Sediment	30 28	30 28	30 28	31 28	2 1		
Scriwininbau	Pb_Sediment_Ton	29	29	29	29	1		
	Pb_Hochwasser_Ton	Kein HW						
	ER(Pb)	0,91	0,91	0,92	0,90		0,90	0,92
	ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	Kein HW 0,96	0.96	0,97	0.95			
	(= 1 = 1 = 1 ,	-,	.,	-,-	-,			
							57 (27)	5 D(0 D)
Gunningen (GUN)	Pb Pb Boden	Mittelwert 27	Median 27	<u>Min</u> 18	Max 32	Anzahl 11	ER(GPmin)	ER(GPmax)
Cullingen (CON)	Pb_Sediment	23	23	21	25	2		
	Pb_Sediment_Ton	18	18	16	19	2		
	Pb_Hochwasser_Ton ER(Pb)	Kein HW 0,84	0,84	1,19	0,76		0,66	1,38
	ER(Pb_Ton_HW)	Kein HW	0,04	1,10	0,70		0,00	1,50
	ER(Pb_Ton_Sediment)	0,65	0,65	0,93	0,58			
			0,65	0,93	0,58			
Oberschwaben			0,65	0,93 Min	0,58 Max	Anzahl	ER(GPmin)	ER(GPmax)
Fleischwangen	Pb_Boden	0,65 Mittelwert	Median 14	Min 12	Max 26	11	ER(GPmin)	ER(GPmax)
	Pb_Boden Pb_Sediment	0,65 Mittelwert 15 20	Median 14 20	Min 12 15	Max 26 26	11 2	ER(GPmin)	ER(GPmax)
Fleischwangen	Pb Pb_Boden Pb_Sediment Pb_Sediment	0,65 Mittelwert 15 20 19	Median 14 20 19	Min 12 15 18	Max 26 26 20	11 2 2	ER(GPmin)	ER(GPmax)
Fleischwangen	Pb_Boden Pb_Sediment	0,65 Mittelwert 15 20	Median 14 20	Min 12 15	Max 26 26	11 2	ER(GPmin)	ER(GPmax)
Fleischwangen	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW)	0,65 Mittelwert 15 20 19 26 1,32 1,66	Median 14 20 19 26 1,50 1,88	Min 12 15 18 26 1,26 2,14	Max 26 26 20 26 0,99 0,98	11 2 2	,	
Fleischwangen	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb)	0,65 Mittelwert 15 20 19 26 1,32	Median 14 20 19 26 1,50	Min 12 15 18 26 1,26	Max 26 26 20 26 0,99	11 2 2	,	
Fleischwangen	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW)	0,65 Mittelwert 15 20 19 26 1,32 1,66	Median 14 20 19 26 1,50 1,88	Min 12 15 18 26 1,26 2,14	Max 26 26 20 26 0,99 0,98	11 2 2	,	
Fleischwangen (FLE)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert	Median 14 20 19 26 1,50 1,88 1,39 Median	Min 12 15 18 26 1,26 2,14 1,49	26 26 20 26 0,99 0,98 0,77	11 2 2 1	,	
Fleischwangen	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18	Median 14 20 19 26 1,50 1,88 1,39 Median	Min 12 15 18 26 1,26 2,14 1,49 Min 13	26 26 20 26 0,99 0,98 0,77	11 2 2 1	0,57	2,17
Fleischwangen (FLE)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15	26 26 20 26 0,99 0,98 0,77	11 2 2 1 1 Anzahl 13 3	0,57	2,17
Fleischwangen (FLE)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38	Min 12 15 18 26 1,26 2,14 1,49 Min 13	Max 26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38	11 2 2 1	0,57	2,17
Fleischwangen (FLE)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb)	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11	26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94	11 2 2 1 1 Anzahl 13 3 3	0,57	2,17
Fleischwangen (FLE)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW)	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03 2,07	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11 2,02	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11 2,90	26 26 20 26 0,99 0,77 Max 23 21 39 38 0,94 1,69	11 2 2 1 1 Anzahl 13 3 3	0,57	2,17 ER(GPmax)
Fleischwangen (FLE)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb)	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11	26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94	11 2 2 1 1 Anzahl 13 3 3	0,57	2,17 ER(GPmax)
Fleischwangen (FLE) Mittelurbach (MIT)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03 2,07 1,87	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11 2,02 1,92	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11 2,90 2,13	Max 26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94 1,69 1,72	11 2 2 1 1 Anzahl 13 3 3	0,57 ER(GPmin) 0,64	2,17 ER(GPmax) 1,61
Fleischwangen (FLE) Mittelurbach (MIT)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03 2,07 1,87 Mittelwert	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11 2,02 1,92 Median	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11 2,90 2,13	Max 26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94 1,69 1,72	11 2 2 1 1 Anzahl 13 3 3 1	0,57	2,17 ER(GPmax)
Fleischwangen (FLE) Mittelurbach (MIT)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment_Ton Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb_Boden	0,65 Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03 2,07 1,87 Mittelwert 20	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11 2,02 1,92 Median 19	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11 2,90 2,13	Max 26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94 1,69 1,72 Max 31	11 2 2 1 1 Anzahl 13 3 3 1	0,57 ER(GPmin) 0,64	2,17 ER(GPmax) 1,61
Fleischwangen (FLE) Mittelurbach (MIT)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment	Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03 2,07 1,87 Mittelwert 20 21 47	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11 2,02 1,92 Median 19 21 37	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11 2,90 2,13	Max 26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94 1,69 1,72 Max 31 23 80	11 2 2 1 1 3 3 3 1 1 Anzahl 25 10 9	0,57 ER(GPmin) 0,64	2,17 ER(GPmax) 1,61
Fleischwangen (FLE) Mittelurbach (MIT)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton Pb_Hochwasser_Ton Pb_Hochwasser_Ton Pb_Hochwasser_Ton Pb_Hochwasser_Ton Pb_Hochwasser_Ton	Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03 2,07 1,87 Mittelwert 20 21 47 47	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11 2,02 1,92 Median 19 21 37 47	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11 2,90 2,13 Min 13 19 29 44	Max 26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94 1,69 1,72 Max 31 23 80 56	11 2 2 1 1 Anzahl 13 3 3 1	0,57 ER(GPmin) 0,64 ER(GPmin)	2,17 ER(GPmax) 1,61 ER(GPmax)
Fleischwangen (FLE) Mittelurbach (MIT)	Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Hochwasser_Ton ER(Pb) ER(Pb_Ton_HW) ER(Pb_Ton_HW) ER(Pb_Ton_Sediment) Pb Pb_Boden Pb_Sediment Pb_Sediment Pb_Sediment	Mittelwert 15 20 19 26 1,32 1,66 1,22 Mittelwert 18 19 35 38 1,03 2,07 1,87 Mittelwert 20 21 47	Median 14 20 19 26 1,50 1,88 1,39 Median 19 21 36 38 1,11 2,02 1,92 Median 19 21 37	Min 12 15 18 26 1,26 2,14 1,49 Min 13 15 28 38 1,11 2,90 2,13 Min 13 19 29	Max 26 26 20 26 0,99 0,98 0,77 Max 23 21 39 38 0,94 1,69 1,72 Max 31 23 80	11 2 2 1 1 3 3 3 1 1 Anzahl 25 10 9	0,57 ER(GPmin) 0,64	2,17 ER(GPmax) 1,61

Hohenlohe	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Pb_Boden	54	26	18	819	49		
	Pb_Sediment	22	22	18	29	12		
	Pb_Sediment_Ton	22	22	18	25	11		
	Pb_Hochwasser_Ton	29	28	27	39	6		
	ER(Pb)	0,41	0,83	0,78	0,94		0,02	1,63
	ER(Pb_Ton_HW)	0,54	1,07	0,97	1,23			
	ER(Pb_Ton_Sediment)	0,40	0,83	0,77	0,87			
Albvorland	Pb	Mittalwant	Madian	Min	May	Annahl	ED/CDmin)	ER(GPmax)
4 Standorte	Pb_Boden	Mittelwert 26	Median 27	Min 9	Max 70	Anzahl 34	ER(GPmin)	EK(GFIIIax)
4 Standorte	Pb_Sediment	25	22	17	46	9		
	Pb_Sediment_Ton	19	18	11	28	9		
	Pb_Hochwasser_Ton	24	24	19	28	2		
	ER(Pb)	0,95	0,80	0,67	1,16		0,24	5,25
	ER(Pb_Ton_HW)	0,90	0,87	0,63	1,41			
	ER(Pb_Ton_Sediment)	0,72	0,67	0,49	1,20			
Oberschwaben	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
2 Standorte	Pb_Boden	17	16	12	26	24	,	. ,
	Pb_Sediment	20	21	15	26	5		
	Pb_Sediment_Ton	27	28	18	39	5		
	Pb_Hochwasser_Ton	32	32	26	38	2		
	ER(Pb)	1,16	1,27	1,11	1,50		0,56	2,17
	ER(Pb_Ton_HW) ER(Pb_Ton_Sediment)	1,88 1,58	1,96 1,69	1,88 1,39	2,02 1,92			
	Entr b_ron_ocumenty	1,50	1,00	1,00	1,02			
Baden-Württemberg	Pb	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
13 Standorte	_Pb_Boden	29	23	9	819	132		
	Pb_Sediment	22	21	15	46	36		
	Pb_Sediment_Ton	28	25	11	80 56	34		
	Pb_Hochwasser_Ton ER(Pb)	33 0,75	30 0,94	19 0,67	56 1,11	13	0,02	5,25
	Litti Dj	0,70	0,04	0,07	.,		0,02	0,20
Kraichgau	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Eichtersheim (EIC)	Zn_Boden	49 57	48 57	37	63	10 4		
	Zn_Sediment Zn_Sediment_Ton	57 117	57 115	51 108	62 130	4		
	Zn_Hochwasser_Ton	Kein HW	113	100	130	4		
	ER(Zn)	1,15	1,18	1,38	0,98		0,81	1,68
	ER(Zn_Ton_HW)	Kein HW					•	•
	ER(Zn_Ton_Sediment)	2,38	2,39	2,92	2,07			
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grombach (GRO)	Zn_Boden	53	55	43	62	9	LINGS IIIII)	LIN(OI IIIAX)
Grombach (GRO)	Zn_Boden Zn Sediment	53 67	55 65	43 64	62 73	9 4		
	Zn_Sediment_Ton	95	85	82	127	4		
	Zn_Hochwasser_Ton	130	130	130	130	2		
	ER(Zn)	1,25	1,17	1,49	1,18		1,03	1,70
	ER(Zn_Ton_HW)	2,44	2,36	3,02	2,10			
	ER(Zn_Ton_Sediment)	1,78	1,55	1,91	2,05			
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Babstadt (BAB)	Zn_Boden	50	47	43	68	6	LINGI IIIII)	LINGT HIAK)
במטנומו (בתב)	Zn_Sediment	75	75	72	77	2		
	Zii_Seuiiileiit	75	13	1 4	, ,	_		

	Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	97 150 1,49 2,99 1,94	97 150 1,59 3,19 2,07	97 150 1,67 3,49 2,27	97 150 1,13 2,21 1,43	1	1,06	1,79
Hohenlohe	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Neuenstein (NEU)	Zn_Boden Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	70 87 104 173 1,25 2,48 1,49	63 90 110 170 1,43 2,70 1,75	30 71 87 160 2,37 5,33 2,90	190 101 114 188 0,53 0,99 0,60	17 3 3 3 3	0,37	3,35
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Berndshausen (BER)	Zn_Boden Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	64 124 125 149 1,94 2,34 1,96	63 106 111 149 1,69 2,37 1,76	53 82 57 149 1,55 2,82 1,07	77 199 221 149 2,59 1,94 2,87	11 4 4 1	1,07	3,77
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Hermuthausen (HER)	Zn_Boden Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	62 68 79 70 1,09 1,12 1,27	56 68 79 70 1,21 1,25 1,41	50 66 66 70 1,33 1,41 1,33	87 70 93 70 0,80 0,80 1,06	7 2 2 1	0,76	1,41
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Seidelklingen (SEI)	Zn_Boden Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	67 94 115 130 1,39 1,93 1,71	69 94 116 130 1,37 1,90 1,70	31 94 113 130 3,05 4,23 3,68	129 94 116 130 0,73 1,01 0,90	14 3 3 1	0,73	3,05
Albvorland	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Haigerloch- Weildorf (HAI)	Zn_Boden Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	50 74 98 140 1,47 2,79 1,96	50 74 98 140 1,47 2,78 1,95	46 69 98 140 1,52 3,08 2,15	55 79 99 140 1,44 2,56 1,82	8 2 2 1	1,27	1,73
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Grosselfingen (GRS)	Zn_Boden Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	95 88 101 100 0,92 1,06 1,07	94 88 101 100 0,93 1,07 1,08	55 56 101 100 1,02 1,82 1,83	134 119 101 100 0,89 0,75 0,76	10 2 2 1	0,42	2,16

	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Spaichingen (SPA)	Zn_Boden	93	88	74	122	5	•	
	Zn_Sediment	156	156	135	178	3		
	Zn_Sediment_Ton	134	140	106	156	3		
	Zn_Hochwasser_Ton	Kein HW						
	ER(Zn)	1,69	1,79	1,84	1,46		1,11	2,42
	ER(Zn_Ton_HW)	Kein HW						
	ER(Zn_Ton_Sediment)	1,45	1,60	1,45	1,28			
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Zn_Boden	117	120	112	120	3		
Parkplatz	Zn_Sediment	122	122	122	122	1		
	_Zn_Sediment_Ton	122	122	122	122	1		
	Zn_Hochwasser_Ton	Kein HW	4.00	4.40	4.00		4.00	4.40
	ER(Zn)	1,04	1,02	1,10	1,02		1,02	1,10
	ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	Kein HW 1,04	1,02	1,09	1,01			
	Lix(Zii_Toii_Sediiileiit)	1,04	1,02	1,09	1,01			
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Staufelberg	Zn_Boden	104	104	90	117	2		_
Schwimmbad	Zn_Sediment	106	106	106	106	1		
	_Zn_Sediment_Ton	133	133	133	133	1		
	Zn_Hochwasser_Ton	Kein HW	1.02	1 17	0.00		0,90	1,17
	ER(Zn) ER(Zn_Ton_HW)	1,02 Kein HW	1,02	1,17	0,90		0,90	1,17
	ER(Zn_Ton_Sediment)	1,28	1,28	1,47	1,13			
		-,	-,	.,	.,			
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Gunningen (GUN)	_Zn_Boden	70	65	52	130	11		
	Zn_Sediment	104	104	94	114	2		
	Zn_Sediment_Ton	105	105	105	105	2		
	Zn_Hochwasser_Ton ER(Zn)	Kein HW 1,49	1,61	1,81	0,88		0,72	2,20
	ER(Zn_Ton_HW)	Kein HW	1,01	1,01	0,00		0,72	2,20
	ER(Zn_Ton_Sediment)	1,51	1,63	2,02	0,81			
	, – – ,	·	•	·	•			
Oberschwaben	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Fleischwangen	Zn_Boden	56	54	38	74	11		
(FLE)	Zn_Sediment	42	42	31	52	2 2		
	Zn_Sediment_Ton Zn_Hochwasser_Ton	137 110	137 110	136 110	137 110	1		
	ER(Zn)	0,75	0,77	0,83	0,70	'	0,42	1,37
	ER(Zn_Ton_HW)	1,98	2,05	2,91	1,49		0,42	1,57
	ER(Zn_Ton_Sediment)	2,46	2,55	3,61	1,85			
	, – – ,							
	_					_		
	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
Mittelurbach (MIT)	Zn_Boden	64 68	66 67	44	80 74	13		
	Zn_Sediment	68 142	67 140	63	74 180	3		
	Zn_Sediment_Ton Zn_Hochwasser_Ton	143 130	140 130	99 130	189 130	3 1		
	ER(Zn)	1,06	1,02	1,44	0,93	ı	0,79	1,69
	ER(Zn_Ton_HW)	2,02	1,98	2,96	1,63		0,70	1,00
	ER(Zn_Ton_Sediment)	2,22	2,13	2,26	2,36			
	, = =	•	, -	, =	, -			
Kraichgau	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
3 Standorte	Zn_Boden	51	48	37	68	25		

	Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	66 103 140 1,30 2,76 2,03	65 97 140 1,34 2,92 2,03	51 82 130 1,17 2,36 1,55	77 130 150 1,59 3,19 2,39	10 9 3	0,75	2,08
Hohenlohe	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Zn_Boden Zn_Sediment Zn_Sediment_Ton Zn_Hochwasser_Ton ER(Zn) ER(Zn_Ton_HW) ER(Zn_Ton_Sediment)	66 93 106 131 1,42 1,98 1,61	63 92 111 140 1,46 2,22 1,75	30 66 57 70 1,21 1,25 1,41	190 199 221 188 1,69 2,70 1,76	49 12 12 6	0,35	6,65
Albvorland	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
4 Standorte	Zn_Boden	77	76	46	134	34	(0)	Lit(Oi max)
	Zn_Sediment	105	96	56	178	9		
	Zn_Sediment_Ton	110	103	98	156	9		
	Zn_Hochwasser_Ton	120	120	100	140	2	0.40	0.04
	ER(Zn) ER(Zn_Ton_HW)	1,37	1,26 1,58	0,93	1,79		0,42	3,91
	ER(Zn_Ton_Sediment)	1,56 1,43	1,36	1,07 1,08	2,78 1,95			
Oberschwaben	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
2 Standorte	Zn_Boden	60	60	38	80	24		
	Zn_Sediment	55	54	31	74	5		
	Zn_Sediment_Ton	140	138	99	189	5		
	Zn_Hochwasser_Ton ER(Zn)	120 0,92	120 0,91	110 0,77	130 1,02	2	0,39	1,96
	ER(Zn_Ton_HW)	2,00	2,01	1,98	2,05		0,59	1,90
	ER(Zn_Ton_Sediment)	2,33	2,32	2,13	2,55			
Baden-Württemberg	Zn	Mittelwert	Median	Min	Max	Anzahl	ER(GPmin)	ER(GPmax)
13 Standorte	Zn_Boden	63	61	30	190	132		
	Zn_Sediment	80	78	31	199	36		
	Zn_Sediment_Ton	115	107	57	221	35		
	Zn_Hochwasser_Ton	128 1,26	130 1,27	70 0.77	188 1,21	13	0,16	6,65
	ER(Zn)	1,20	1,41	0,77	1,41		0,16	0,00

REGIERUNGSPRÄSIDIUM FREIBURG

Landesamt für Geologie, Rohstoffe und Bergbau

Bodenkundlicher Fachbeitrag des LGRB zum Projekt "Ableitung naturraumtypischer Anreicherungsfaktoren zur Bestimmung des Phosphor- und Schwermetalleintrags in Oberflächengewässer durch Erosion"

Aktenzeichen: 4765//06 3898

Datum: 27.03.2006

Bearbeiter: Dr. F. Waldmann Durchwahl: 0761 208-3157

Seitenzahl: 38 Anlagen: -

Auftraggeber: Universität Karlsruhe (TH)

Institut für Wasser und Gewässerentwicklung (IWG) Bereich Siedlungswasser- und Wassergütewirtschaft

76128 Karlsruhe

Bezug: Werkvertrag vom 03.05.2005

LGRB - Az.: 4765//04 1183

Betreff: Bestimmung von Suchräumen zur Auswahl der Hochwasserrückhal-

tebecken, Beschreibung der Bodenarten und der Schwermetallge-

halte der Oberböden Baden-Württembergs

Inhalt		Seite
1 Vorbeme	rkung	2
2 Suchräun	ne	2
3 Bodenart	3	
4 Schwerm	9	
5 Literatur		14
Anhang 1:	Hintergrundgehalte von Schwermetallen in Oberböden Baden-Württembergs	16

1 Vorbemerkung

Das Institut für Wasser und Gewässerentwicklung (IWG) der Universität Karlsruhe, Bereich Siedlungswasser- und Wassergütewirtschaft führt das Forschungsvorhaben "Ableitung naturraumtypischer Anreicherungsfaktoren zur Bestimmung des Phosphor- und Schwermetalleintrags in Oberflächengewässer durch Erosion" durch. Das Landesamt für Geologie, Rohstoffe und Bergbau im Regierungspräsidium Freiburg (LGRB) erstellt im Rahmen eines Werkvertrags mit der Universität Karlsruhe vom 03.05.2005 bodenkundliche Fachbeiträge zur Projektdurchführung.

Mit E-Mail vom 25.04. und 23.09.2005 sowie CD-ROM vom 03.06.2005 wurden dem IWG, Bereich Siedlungswasser- und Wassergütewirtschaft, bereits digitale Unterlagen für die Themen "landesweite Suchräume", "Bodenarten der Oberböden" und "Schwermetallgehalte der Oberböden" übermittelt. Am 19.05., 15.12 und 16.12.2005 erfolgte zusammen mit Herrn Schwarz vom IWG die Auswahl der geeigneten Hochwasserrückhaltebecken (HRB) vor Ort.

2 Suchräume

Für eine Vorauswahl der für das Forschungsprojekt des IWG in Frage kommenden Hochwasserrückhaltebecken wurden vom LGRB bevorzugte Suchräume ausgewiesen. Neben einer vorherrschenden Ackernutzung im Einzugsgebiet der HRB, sollen die Suchräume das Spektrum der verschiedenen Bodenarten in Baden-Württemberg weitestgehend abdecken. Zusätzlich sollen die Einzugsgebiete der HRB relativ homogene Böden und einen einheitlichen geologischen Untergrund aufweisen.

Zur Umsetzung wurden die Landnutzungseinheiten "Acker" und "komplexe Parzellenstruktur" aus Corine-Landcover (Ministerium für Umwelt und Verkehr Baden-Württemberg & Landesanstalt für Umweltschutz Baden-Württemberg 2004) mit ausgewählten Bodeneinheiten der Bodenübersichtskarte 1: 350 000 (BÜK350) verschnitten. Das Ergebnis ist zusammenfassend in Tab. 1 dargestellt. Die entsprechenden Polygone wurden dem IWG bereits in 2005 übermittelt.

Suchraum	Lage	Geologie	Bodenart
1	Westlicher Kraichgau	Löss	schluffig
2	Östlicher Kraichgau und Neckarbecken	Löss	schluffig-lehmig
3	Bodenseegebiet	Jungmoräne	lehmig
4a	Umgebung Schwäbisch Hall	Gipskeuper	tonig-lehmig
4b	Hohenlohe	Unterkeuper, z.T. mit Lösslehmbedeckung	tonig-lehmig und schluffig-lehmig
4c	Südwestliches Albvorland	Unter- und Mitteljura	tonig-lehmig
5a	Nordschwarzwald	Oberer Buntsandstein	sandig-lehmig
5b	Waldberge	Stubensandstein	sandig-lehmig

Tab. 1: Lage, Geologie und Bodenarten der Suchräume in Baden-Württemberg

Das Oberrheingebiet wurde bei der Auswahl der Suchräume nicht berücksichtigt. Häufig wechseln im Einzugsgebiet der HRB am westlichen Schwarzwaldrand sowohl die Landnutzungen (Acker, Grünland, Reben, Wald) als auch die Böden und der geologische Untergrund stark. Somit ist es schwierig, für die einzelnen Einzugsgebiete eine mittlere Bodenart und einen mittleren Schwermetallstatus zu bestimmen, der dann mit den in den HRB gemessen Werten verglichen werden kann. Zusätzlich können in den Einzugsgebieten Areale vorkommen (z.B. Halden), die aufgrund der historischen Bergbautätigkeit deutlich höhere Schwermetallbelastungen aufweisen.

3 Bodenarten der Oberböden

Die Bodenarten der Oberböden Baden-Württembergs können auf Grundlage der Boden-übersichtskarte 1:200 000 in 27 unterschiedliche Feinbodenartenmuster unterteilt werden. Steine und Fels dominieren zusätzlich in 2 und Torfe in 3 Varianten (Tab. 2, Abb. 1 & 3). Die Feinbodenmuster unterscheiden sich noch zusätzlich im Grobbodengehalt (Abb. 4). Diese feine Untergliederung ist für die Interpretation, Extrapolation und Modellierung der Projektergebnisse aus den einzelnen Hochwasserrückhaltebecken wahrscheinlich zu detailliert. Vereinfachend lässt sich die Bodenartenzusammensetzung der Oberböden Baden-Württembergs in 10 Varianten gliedern, davon sind 8 Feinbodengruppen ohne weitere Grobbodenunterteilung, zusätzlich kommen eine Torf- und eine Stein-Einheit vor (Tab. 1, Abb. 2). Die Benennung der Feinbodengruppen dient zur Kurzcharakterisierung und gegenseitigen Unterscheidung. Die Begriffe entsprechen inhaltlich nicht den gleich lautenden Bodenartengruppen der Bodenkundlichen Kartieranleitung, 5. Auflage (Ad-hoc-AG Boden 2005). In Abbildung 3 sind die mittleren Ton- und Schluffgehalte der einzelnen Feinbodengruppen dargestellt.

Fe	eingliederung]	Generalisierung					
Bodenarten	Tongehalte (%)	Schluffgehalte (%)	Bodenarten	mittlerer Ton- gehalt (%)	mittlerer Schluff- gehalt (%)			
Χ			Steine					
X+SI			Otoliic					
S	0 - 5	0 - 10						
S+SI	0 - 12	0 - 40	Sand	5	20			
fSu+fSlu	0 - 8	10 - 50	Sand		20			
SI	5 - 12	10 - 40						
SI+Ls	5 - 25	10 - 40	Sandlehm	18	25			
Ls	17 - 25	15 - 40	Sandienin	10	25			
Slu+Uls+Ls2	8 - 25	40 - 65	Lehm	18	50			
SI+Ut+Lu	5 - 30	10 - 95	Leilli	10	30			
U+Ut	0 - 17	65 - 100	Schluff	10	80			
Ut	8 - 17	65 - 95	Scriidii	10	00			
Uls+Ls2+Lt2	8 - 35	30 - 65						
Ut+Lu	8 - 30	50 - 95	Lehmschluff	20	65			
Ut+Lu+Tu3	8 - 45	50 - 95						
Lu	17 - 30	50 - 65						
Ls+Lu	17 - 30	(15) 30 - 65	Schlufflehm	25	50			
Ls2	17 - 25	40 - 50						
Ls+Lt	17 - 45	(15) 30 - 50						
Lu+Lt	17 - 45	30 - 65						
Lu+Tu3	17 - 45	50 - 65						
Lu+Tu3(+Tl)	17 - 45 (65)	(30) 50 - 65						
Lu+Tu3+Tl	17 - 65	30 - 65	Tonlehm	35	50			
Tu3	35 - 45	50 - 65						
Tu3+Lt	25 - 45	30 - 65						
Lt	25 - 45	30 - 50						
Lt+TI	25 - 65	30 - 50						
SI+Ls+Lt	5 - 45	10 - 50	Sandton	25	30			
stark wechselnd			Sandion	25	30			
H+L								
H+S			Torf					
Н								

Tab. 2: Zusammenstellung der Bodenarten der Oberböden Baden-Württembergs auf Basis der Bodenübersichtskarte von Baden-Württemberg 1: 200 000;

Bei den Feinbodenarten ist der Bodenskelettanteil nicht als zusätzliches Differenzierungsmerkmal aufgeführt, die generalisierten Bodenartenbegriffe entsprechen inhaltlich nicht den Bodenartengruppen der Bodenkundlichen Kartieranleitung (Ad-hoc-AG Boden 2005)

Erläuterung der Kürzel (siehe auch Bodenkundlichen Kartieranleitung (Ad-hoc-AG Boden 2005)

- X Steine
- S, s Sand, sandig
- U, u Schluff, schluffig
- L, I Lehm, lehmig
- T, t Ton, tonig
- H Torf
- 2, 3, 4 schwach, mittel, stark

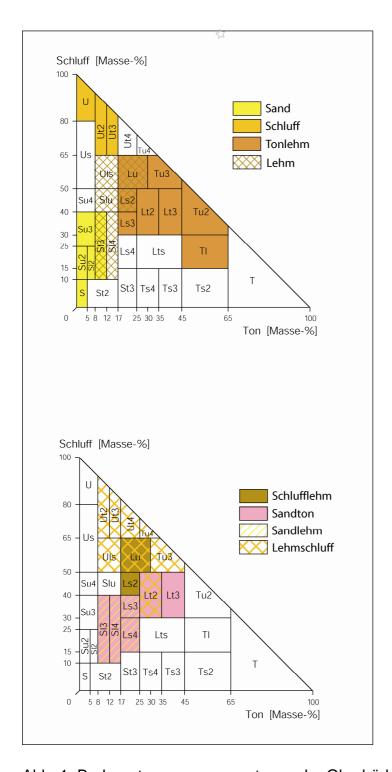


Abb. 1: Bodenartenzusammensetzung der Oberböden Baden-Württembergs

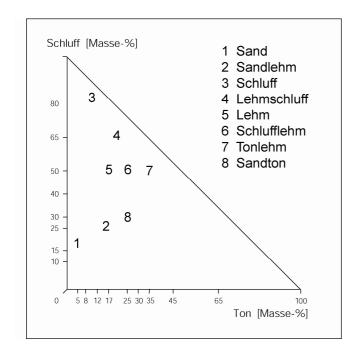


Abb. 2: Mittlere Ton- und Schluffgehalte der Feinbodengruppen der Oberböden Baden-Württembergs

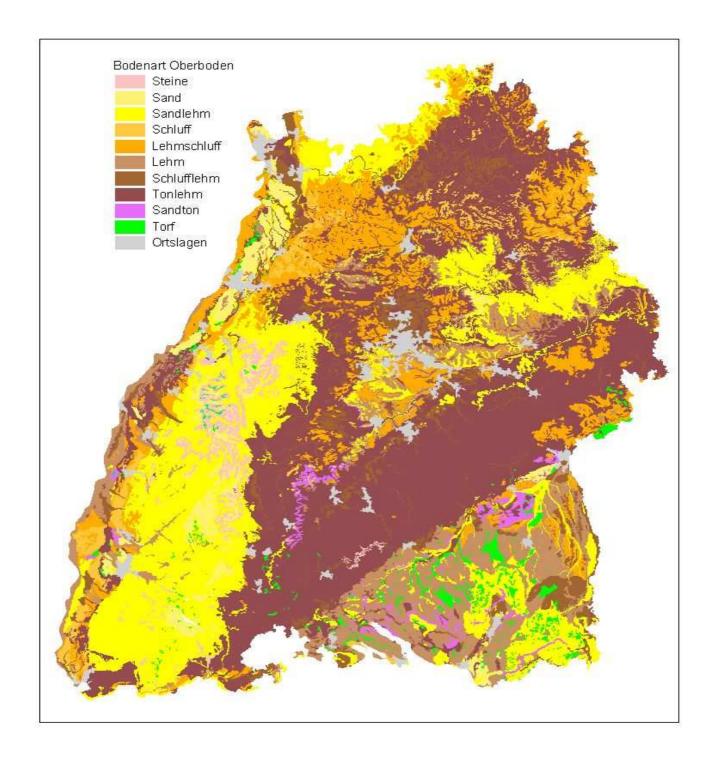


Abb. 3: Bodenarten der Oberböden Baden-Würtembergs in generalisierter Form, [die Begriffe entsprechen inhaltlich nicht den Bodenartengruppen der Bodenkundlichen Kartieranleitung (Ad-hoc-AG Boden 2005)], nähere Angaben siehe Tab. 2

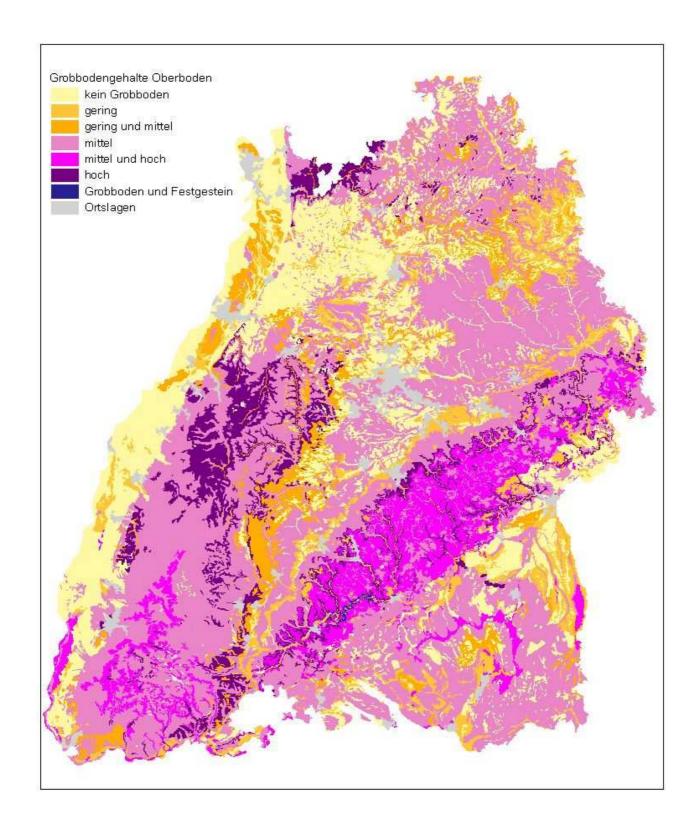


Abb. 4: Grobbodengehalte der Oberböden Baden-Württembergs

4 Schwermetallgehalte der Oberböden Baden-Württembergs

Schwermetalle in Böden stammen aus natürlichen und anthropogenen Quellen. In Böden, als Endglied der Gesteinsverwitterung, sind Schwermetalle lithogener Herkunft enthalten. Durch Sand- und Staubeinträge können sich, je nach Schwermetallausstattung der Lieferund Empfängergebiete, Anreicherungs- oder Verdünnungseffekte ergeben. Ein v. a. in geologischen Zeiträumen wichtiger Aspekt, der für Mitteleuropa während der letzten Eiszeiten von Bedeutung war. Zusätzlich werden Schwermetalle über die Atmosphäre durch Luft und Niederschläge eingetragen. Diese können geogener Natur sein (z. B. aus Vulkanausbrüchen) oder aus anthropogenen Quellen (z. B. Verkehr, Industrie, Verbrennungsanlagen) stammen. Eine weitere Schwermetallquelle stellt die Verwendung von Düngemittel und Agrochemikalien sowie die Ausbringung von Klärschlämmen und Komposten in der Landwirtschaft dar. Der Schwermetallpool im Boden unterliegt pedogenen Stoffverlagerungsprozessen, wobei v. a. die Podsolierung und untergeordnet die Lessivierung von Bedeutung sind. Bei Ackernutzung erfolgt im Oberboden durch die Bodenbearbeitung eine weitgehende Homogenisierung. Schwermetallausträge erfolgen durch Pflanzenentzug und unter bestimmten Voraussetzungen durch Auswaschung mit dem Sickerwasser.

Der Hintergrundgehalt eines Schwermetalls im Boden setzt sich per Definition zusammen aus dem geogenen Grundgehalt und einem allgemein üblichen, überall verbreiteten (ubiquitären) diffusen, anthropogenen Stoffeintrag. Er ist typisch bzw. repräsentativ für bestimmte Böden, Gebiete oder auch Nutzungen. Er enthält nicht solche Gehalte, die durch punktuell hohe Stoffeinträge (z. B. Altlast) deutlich erhöht sind. Der anthropogene Anteil am Hintergrundgehalt ist allerdings i. d. R. aufgrund der vielen in Frage kommenden Einflussfaktoren quantitativ nicht vom geogenen Anteil abzutrennen (Bayerisches Geologisches Landesamt 1998). Hintergrundwerte sind Repräsentativwerte für allgemein verbreitete Hintergrundgehalte eines Stoffes oder einer Stoffgruppe in Böden. Sie beruhen auf den ermittelten Hintergrundgehalten und bezeichnen unter Angabe der statistischen Kenngröße repräsentative Stoffkonzentrationen im Boden. Das 90. Perzentil eines Datenkollektivs wird meist zur Kennzeichnung des Hintergrundwerts verwendet (Bund-Länder-Arbeitsgemeinschaft Bodenschutz 1995). Es repräsentiert per Definition die Obergrenze des Wertebereichs ohne besondere Zusatzbelastung.

4.1 Datengrundlagen

Vom LGRB wurde im Rahmen des Wasser- und Bodenatlas Baden-Württemberg (Ministerium für Umwelt und Verkehr Baden-Württemberg & Landesanstalt für Umweltschutz Baden-Württemberg 2004) eine Auswertung zu den Hintergrundgehalten der Schwermetalle Blei, Cadmium, Chrom, Kupfer, Nickel, Quecksilber und Zink in ackerbaulich genutzten Oberböden Baden-Württembergs durchgeführt. Datengrundlagen und Methodik sind im Wasser- und Bodenatlas näher beschrieben. Einige Besonderheiten werden im Folgenden kurz aufgeführt. Im Anhang 1 sind neben den Schwermetallgehalten der Ackerstandorte zusätzlich die Werte für Grünland- und Waldstandorte dokumentiert.

Die verwendeten Bodendaten verschiedener staatlicher Stellen stammen aus dem Zeitraum 1977 bis 2001. Es handelt sich um unterschiedliche Mess- und Untersuchungsprogramme sowie um Bodendaten im Rahmen der Klärschlammausbringung. Allen gemeinsam ist, dass die Zielrichtung der Standortauswahl nicht im Hinblick auf den Nachweis von besonderen anthropogenen oder chalkogenen (erzbürtigen) Stoffanreicherungen erfolgte. Die Proben wurden mit Königwasser aufgeschlossen (DIN 38414, Teil 7).

Die Daten der verschiedenen Quellen und Messprogramme weisen inhaltlich deutliche Unterschiede auf (Tab. 3):

- * 1 905 Datensätze enthalten neben den Schwermetallwerten zusätzlich bodenkundliche Parameter und Angaben zum Ausgangsmaterial oder zum geologischen Untergrund
- * 2 495 Datensätze enthalten neben den Schwermetallwerten keine bodenkundlichgeologischen Angaben. Zur räumlichen Lokalisierung sind nur Rechts- und Hochwerte aufgeführt.
- * ca.18 000 Datensätze enthalten neben den Schwermetallwerten keine bodenkundlichgeologischen Angaben. Eine räumliche Zuordnung erfolgt nur auf Gemeinde- bzw. Gemarkungsniveau. Von der Gesamtmenge konnten 7170 Datensätze weiter verwendet werden.

Nutzung		Anzahl	der Standorte	
	mit Profil-	nur mit	nur mit Gemeinde-	Summe
	beschrieb	Rechts- u.	bzw. Gemarkungs-	
		Hochwert	angabe	
Acker	590	2100	7170	9860
Grünland	800	140		940
Wald	515	255		770

Tab. 3: Beschreibung und Nutzung der Beprobungsstandorte

4.2 Datenaufbereitung

Der Vorteil der großen Anzahl von Analysedaten wird durch die schlechte Lokalisierbarkeit wieder stark eingeschränkt. Für zahlreiche Proben ist nur die Lage der Gemeinde bzw. der Gemarkung die räumliche Bezugsgröße. Um die Daten auswerten zu können, wurden auf Basis von Landnutzungs-, Bodenübersichts-, Geologischer Übersichts- und Verwaltungskarten landesweit alle Gemeinden bzw. im Landkreis Tübingen alle Gemarkungen ausgewählt, deren Ackerflächen einen relativ einheitlichen geologischen Untergrund aufweisen. Diese Voraussetzung ist bei 441 Gemeinden bzw. Gemarkungen gegeben. Nur die dort liegenden 7170 der ursprünglichen 18000 Analysedaten wurden weiterverwendet. Diese Vorgehensweise erforderte eine starke Generalisierung und eine Ausrichtung auf den geologischen Untergrund. Allerdings wurde zusätzlich, soweit möglich, nach unterschiedlichem Lösseinfluss differenziert. Zur Regionalisierung der Schwermetallgehalte der Oberböden in Baden-Württemberg wurden die in Tabelle 4 aufgeführten Geologischen Einheiten gebildet.

Die ausführlich beschriebenen Bodenprofile wurden direkt den Geologischen Einheiten zugeordnet. Bei den nur mit Rechts- und Hochwert gekennzeichneten Daten erfolgte eine Verschneidung der Koordinaten mit der Bodenübersichtskarte (BÜK 200) und anschließend die geologische Einstufung.

Kür- zel	Geologische Einheit Kurzbezeichnung	Geologische Einheit Kennzeichnung nach Symbolschlüssel Geologie des LGRB	Petrographie (nur für Festgestein)
h	Auensediment	Auensediment	
I	Löss und Lösslehm	Löss und Lösslehm	
Nt	Niederterrassen und Schot- terfluren		
Jm	Jungmoränen	Würmzeitliches Moränensediment im Alpenvorland	
Am	Altmoränen	Riß- und mindelzeitliches Moränense- diment im Alpenvorland	
tFl	Feuersteinlehm	Feuersteinlehm	
jo	Oberjura	Oberjura	Kalk- und Dolomitstein, lokal Mergelstein
jm	Mitteljura (Sand- und Ton- stein)	Wedelsandstein- und Eisensandstein- Formation	Sand- und Tonstein
ju+jm	Unter- und Mitteljura (Ton- und Karbonatgestein, ohne Posi- donienschiefer)	Unter- und Mitteljura ohne Posidonien- schiefer-Formation, Angulaten- sandstein-Formation, Eisensandstein- Formation und Wedelsandstein- Formation	Ton-, Mergel- und Kalk- stein
tc1	Posidonienschiefer	Posidonienschiefer-Formation	bituminöser Mergel- und toniger Kalkstein
TM+I	Mesozoisches Ton- und Mergelgestein mit lückenhaf- ter Lössbedeckung	Unterer Muschelkalk, Lettenkeuper- Formation, Gipskeuper-Formation und Unterjura (mit lückenhafter Lössbede- ckung)	vorherrschend Ton- und Mergelstein, untergeordnet Kalk- und Dolomitstein
kS	Sandsteinkeuper	Schilfsandstein-Formation bis Rhät- keuper-Formation	Sand- und Tonstein
kuL + km1	Letten- und Gipskeuper	Lettenkeuper-Formation und Gipskeuper-Formation	Ton-, Mergel- und Dolo- mitstein, lokal Sandstein
mo+l	Oberer Muschelkalk mit lü- ckenhafter Lössbedeckung	Oberer Muschelkalk (mit lückenhafter Lössbedeckung)	Kalk- und Dolomitstein
mo	Oberer Muschelkalk	Oberer Muschelkalk	Kalk- und Dolomitstein
m	Muschelkalk, ungegliedert	Muschelkalk	Mergel-, Kalk- und Dolo- mitstein
so+l	Oberer Buntsandstein mit lückenhafter Lössbedeckung	Oberer Buntsandstein (mit lückenhafter Lössbedeckung)	Sandstein, lokal Tonstein
so	Oberer Buntsandstein	Oberer Buntsandstein	Sandstein, lokal Tonstein
su+sm	Unterer und Mittlerer Bunt- sandstein	Unterer und Mittlerer Buntsandstein	Sandstein
KR	Grundgebirge	Kristallines Grundgebirge	Gneis und Granit

Tab. 4: Geologische Einheiten, die zur Regionalisierung der Schwermetallgehalte in den Oberböden Baden-Württembergs verwendet wurden. Die Kürzel werden in Abbildung 4 verwendet.

Für die Auswertungen im Wasser- und Bodenatlas wurden alle Teilmengen zu einer Grundgesamtheit zusammengefasst (Abb. 5, siehe auch Anhang 1). Für das Element Cadmium sowie für die Geologischen Einheiten Grundgebirge und Sandsteinkeuper ist aufgrund unterschiedlicher Werte der Teilmengen (t-Test) eine Zusammenfassung nur eingeschränkt zulässig. Bei der Lieferung der Schwermetalldaten an das IWG per E-Mail vom 23.09.2005 wurden deshalb auch die statistischen Parameter der einzelnen Teilmengen übermittelt.

4.3 Besonderheiten

Erhöhte Schwermetallwerte in Böden aufgrund des historischen Bergbaus in Baden-Württemberg gehören per Definition nicht zu den Hintergrundgehalten. Sie wurden deshalb bei der o. a. Schwermetallauswertung nicht berücksichtigt. Infolge langfristiger Stoffausträge aus den Halden, durch Materialumlagerungen und v. a. durch die frühere Erzaufbereitung und -verhüttung kommt es in den Auenböden der Täler zu Schwermetall- und Arsenanreicherungen. In Südbaden enthalten v. a. die Talauen von Wiese, Sulzbach, Neumagen, Möhlin, Schutter und Kinzig sowie deren Schwermfächer am Rand der Oberrheinebene großräumig Böden mit erhöhten Schwermetallgehalten (Umweltministerium Baden-Württemberg 1995a & b). In Nordbaden sind die schwermetallbelastenen Gebiete dagegen nicht so großräumig verteilt, sondern enger mit den historischen Bergbaugebieten verknüpft. Von der Flächengröße und den Schwermetallgehalten sind hier die Bereiche bei Wiesloch-Nußloch und bei Neubulach hervorzuheben (Landesanstalt für Umweltschutz Baden-Württemberg 1997).

Deutliche Abweichungen von den angegebenen Schwermetallwerten können in Böden im Bereich von Vererzungen und deren Verwitterungsprodukten auftreten. Vererzungen kommen v. a. im Grundgebirge vor. Im Deckgebirge sind sie nur vereinzelt anzutreffen (z. B. Bleiglanzbank im Unteren Muschelkalk und im Gipskeuper). Der stoffliche Einfluss auf die Böden ist meist räumlich eng begrenzt.

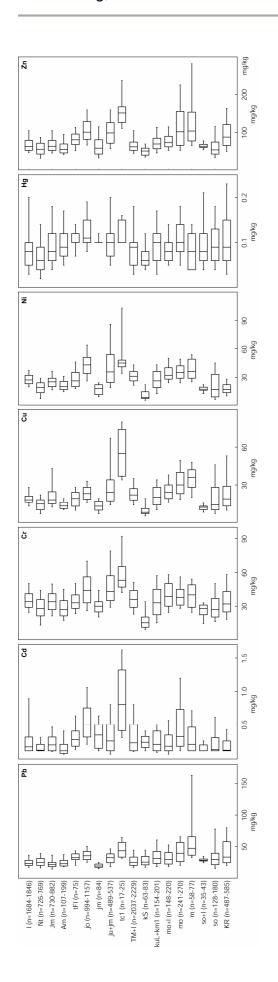


Abb. 5: Schwermetallgehalte ackerbaulich genutzter Oberböden der Geologischen Einheiten Baden-Württembergs als Perzentile (10.-, 25.-, 50.-, 75.-, 90. Perzentil) der Analysedaten in mg/kg Feinerde (Erläuterungen der Kürzel siehe Tab. 4)

5 Literatur

Ad-hoc-AG Boden (2005): Bodenkundliche Kartieranleitung, 5. Aufl., 438 S., Hannover.

Bayerisches Geologisches Landesamt (1998): Hintergrundwerte anorganischer Problemstoffe in den Böden Bayerns. - GLA Fachberichte, **16**, 70+88 S., München.

BBodSchV (1999): Bundes-Bodenschutz- und Altlastenverordnung vom 12.07.1999. - Bundesgesetzblatt 1999, Nr. 36, S. 1554-1582, Bonn.

Bund-Länder-Arbeitsgemeinschaft Bodenschutz (1995): Hintergrund- und Referenzwerte für Böden. - Bodenschutz **4**, 151 S., München.

DIN 38414 Teil 7 (1983): Aufschluss mit Königswasser zur nachfolgenden Bestimmung des säurelöslichen Anteils von Metallen, Berlin (Benth-Verlag).

HINDEL, R. & FLEIGE, H. (1988): Kennzeichnung der Empfindlichkeit der Böden gegenüber Schwermetallen unter Berücksichtigung geogener und pedogener Grundgehalte sowie anthropogener Zusatzbelastung. - Umweltbundesamt, FB 10701001: 137 S., Berlin.

HINDEL, R., GERTH, E., KANTOR, W. & WEIDNER, E. (1998): Spurenelementgehalte in Böden Deutschlands: Geowissenschaftliche Grundlagen und Daten. - In: ROSENKRANZ, D. [Hrsg.]: Bodenschutz, ergänzbares Handbuch, **1520**: 75 S., Berlin (Erich Schmidt).

HOFFMANN, G., SCHWEIGER, P., SCHOLL, W. & SCHMID, R. (1981): Grundbelastung der Böden von Baden-Württemberg mit Schwermetallen. - Landwirtschl. Forschung, Sonderheft **38**, S. 324-337, Frankfurt a. Main.

KIEFFER, F. (1984): Metalle als lebensnotwendige Spurenelemente für Pflanzen, Tiere und Menschen. - In: MERIAN, E. (Hrsg.)(1984): Metalle in der Umwelt, 117-123, Weinheim.

Landesanstalt für Umweltschutz Baden-Württemberg (1994): Schwermetalle in Böden aus verschiedenen Ausgangsgesteinen Baden-Württembergs. - Materialien zum Bodenschutz, **3**, 20 S., Karlsruhe.

Landesanstalt für Umweltschutz Baden-Württemberg [Hrsg.] (1997): Schwermetallbelastungen durch den historischen Bergbau im Raum Wiesloch. - Handbuch Boden - Materialien zum Bodenschutz, **7**: 191 S., Karlsruhe.

Ministerium für Umwelt und Verkehr Baden-Württemberg & Landesanstalt für Umweltschutz Baden-Württemberg [Hrsg.] (2004): Wasser- und Bodenatlas Baden-Württemberg. – 2. erweit. Ausgabe, Stuttgart.

Umweltministerium Baden-Württemberg [Hrsg.] (1995a): Schwermetallgehalte in Böden und Pflanzen alter Bergbaustandorte im Südschwarzwald. - Luft, Boden, Abfall, **32**: 87 S., Stuttgart.

Umweltministerium Baden-Württemberg [Hrsg.] (1995b): Schwermetallgehalte in Böden und Pflanzen alter Bergbaustandorte im Mittleren Schwarzwald. - Luft, Boden, Abfall, **33**: 69 S., Stuttgart.

WALK, H. (1982): Die Gehalte der Schwermetalle Cd, Tl, Pb, Bi und weiterer Spurenelemente in natürlichen Böden und ihren Ausgangsgesteinen Südwestdeutschlands: 170 S., Diss. Univ. Karlsruhe.

ZAUNER, G. (1996): Schwermetallgehalte und -bindungsformen in Gesteinen und Böden aus südwestdeutschem Jura und Keuper. - Hohenheimer Bodenkundlicher Hefte, **31**: 189 S., Stuttgart.

gez.

Dr. Frank Waldmann

Anhang 1 Hintergrundgehalte von Schwermetallen in Oberböden Baden-Württembergs

Datendokumentation

Teil 1: Oberböden (Ap-Horizonte) unter Acker

Teil 2: Oberböden (Ah-Horizonte) unter Grünland

Teil 3: Oberböden (Ah-Horizonte) unter Wald

Teil 4: Humusauflage

Erläuterung:

Angabe der Gesamtgehalte der Feinerde im Königswasseraufschluss, in Teil 4 (Humusauflage) sind zusätzlich Daten im Salpetersäureaufschluss separat aufgeführt

Nwg: Messwerte kleiner Nachweisgrenze

Teil 1: Oberböden (Ap-Horizonte) unter Acker

Schwermetallgesamt	Schwermetallgesamtgehalte ackerbaulich genutzter Oberböden									
Geologische Einheiten				Blei (m	g/kg TS)					
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	arithme- tisches Mittel	90- Perzentil	Max.	Stan- dardab- weichung		
Löss und Lösslehm	1 842	Nwg	17	23	33	36	2 202	89		
Niederterrassen und Schotterfluren	769	7	16	25	30	39	1 019	30		
Jungmoränen	881	1	14	21	24	36	220	14		
Altmoränen	199	7	15	22	24	35	53	8		
Feuersteinlehm	75	10	20	32	32	43	56	9		
Oberjura	1 157	10	25	35	36	50	184	12		
Mitteljura (Sand- und Tonstein)	84	10	15	19	19	34	76	5		
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	537	10	18	32	33	46	155	13		
Posidonienschiefer	25	10	31	43	43	63	71	15		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	2 225	4	17	25	29	44	615	21		
Sandsteinkeuper	83	9	14	22	26	39	130	16		
Letten- u. Gipskeuper	201	11	18	31	40	60	375	37		
Oberer Muschelkalk mit lückenhafter Lössbedeckung	220	1	18	29	35	52	169	21		
Oberer Muschelkalk	270	11	20	38	47	65	470	41		
Muschelkalk, ungegliedert	77	18	31	47	69	168	271	59		
Oberer Buntsandstein mit lückenhafter Lössbedeckung	43	19	25	28	29	34	49	5		
Oberer Buntsandstein	180	9	15	29	53	78	1 570	128		
Grundgebirge	585	7	20	33	44	80	259	32		

Schwermetallgesamt	gehalte	acker	baulich	genutz	ter Ob	erböden	1	
Geologische Einheiten			Ca	admium	(mg/kg	ΓS)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	arithme- tisches Mittel	90- Perzentil	Max.	Stan- dardab- weichung
Löss und Lösslehm	1 846	Nwg	0,09	0,16	0,41	0,90	38,30	1,58
Niederterrassen und Schotterfluren	747	Nwg	0,10	0,11	0,18	0,30	2,50	0,22
Jungmoränen	882	Nwg	0,09	0,19	0,23	0,46	1,30	0,16
Altmoränen	199	Nwg	0,05	0,10	0,16	0,40	0,66	0,13
Feuersteinlehm	75	0,10	0,12	0,27	0,31	0,63	0,94	0,20
Oberjura	1 156	0,01	0,20	0,50	0,59	1,06	10,40	0,49
Mitteljura (Sand- und Tonstein)	84	0,09	0,10	0,34	0,39	0,59	1,70	0,32
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	537	Nwg	0,05	0,25	0,39	0,80	5,70	0,48
Posidonienschiefer	25	0,15	0,30	0,80	0,87	1,61	1,86	0,51
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	2 229	Nwg	0,00	0,22	0,34	0,80	26,00	0,86
Sandsteinkeuper	83	0,05	0,10	0,23	0,24	0,40	0,53	0,13
Letten- u. Gipskeuper	200	Nwg	0,00	0,20	0,26	0,50	2,20	0,26
Oberer Muschelkalk mit lückenhafter Lössbedeckung	220	0,05	0,05	0,17	0,25	0,56	1,06	0,22
Oberer Muschelkalk	269	0,05	0,10	0,32	0,60	1,20	14,63	1,20
Muschelkalk, ungegliedert	77	0,02	0,10	0,20	0,33	0,75	1,20	0,27
Oberer Buntsandstein mit lückenhafter Löss-bedeckung	43	0,10	0,10	0,10	0,14	0,25	0,28	0,06
Oberer Buntsandstein	159	Nwg	0,10	0,12	0,25	0,61	1,50	0,26
Grundgebirge	541	0,02	0,10	0,11	0,24	0,42	8,20	0,57

Schwermetallgesamtgehalte ackerbaulich genutzter Oberböden								
Geologische Einheiten			(Chrom (r	ng/kg TS	S)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	arithme- tisches Mittel	90- Perzentil	Max.	Stan- dardab- weichung
Löss und Lösslehm	1 807	1	24	34	38	50	467	24
Niederterrassen und Schotterfluren	773	3	13	28	29	44	294	15
Jungmoränen	882	1	21	34	35	50	89	12
Altmoränen	199	10	17	27	31	45	290	23
Feuersteinlehm	73	17	23	33	36	50	84	13
Oberjura	1 152	10	26	44	46	70	146	18
Mitteljura (Sand- und Tonstein)	84	16	20	30	34	75	120	18
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	537	11	29	43	50	79	331	31
Posidonienschiefer	25	35	43	53	58	86	97	17
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	2 225	Nwg	22	36	37	51	562	18
Sandsteinkeuper	80	6	9	15	18	34	65	11
Letten- u. Gipskeuper	197	7	15	33	35	57	89	16
Oberer Muschelkalk mit lückenhafter Lössbe- deckung Oberer Mu- schelkalk	220	6	24	38	40	58	96	14
Oberer Muschelkalk	270	9	28	38	40	56	115	14
Muschelkalk, ungegliedert	77	16	23	40	40	54	75	13
Oberer Buntsandstein mit lückenhafter Löss-bedeckung	43	9	15	28	26	33	39	7
Oberer Buntsandstein	158	9	16	27	30	50	85	14
Grundgebirge	543	6	18	32	36	58	176	20

Schwermetallgesamt	gehalte	acker	baulich	genutz	ter Ob	erböden)	
Geologische Einheiten			ı	Kupfer (r	ng/kg TS	S)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	arithme- tisches Mittel	90- Perzentil	Max.	Stan- dardab- weichung
Löss und Lösslehm	1 801	6	13	18	23	28	367	27
Niederterrassen und Schotterfluren	769	Nwg	7	15	15	22	112	6
Jungmoränen	876	1	12	18	31	43	495	52
Altmoränen	199	8	10	13	14	19	71	6
Feuersteinlehm	73	9	10	19	19	28	31	7
Oberjura	1 153	7	16	23	24	33	241	11
Mitteljura (Sand- und Tonstein)	84	4	7	13	13	20	26	5
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	531	1	14	24	36	67	363	41
Posidonienschiefer	22	16	34	54	54	80	82	19
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	2 227	Nwg	14	22	26	35	335	23
Sandsteinkeuper	80	2	5	8	10	19	37	6
Letten- u. Gipskeuper	197	1	10	20	23	34	170	16
Oberer Muschelkalk mit lückenhafter Lössbedeckung	220	12	16	24	27	38	218	19
Oberer Muschelkalk	270	10	18	30	33	50	95	14
Muschelkalk, ungegliedert	77	12	20	36	35	48	59	11
Oberer Buntsandstein mit lückenhafter Löss-bedeckung	43	7	8	12	12	15	27	4
Oberer Buntsandstein	158	5	7	14	22	46	98	18
Grundgebirge	545	2	10	19	28	53	257	32

Schwermetallgesamt	Schwermetallgesamtgehalte ackerbaulich genutzter Oberböden										
Geologische Einheiten				Nickel (r	ng/kg TS	6)					
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	arithme- tisches Mittel	90- Perzentil	Max.	Stan- dardab- weichung			
Löss und Lösslehm	1 810	5	20	27	28	37	77	8			
Niederterrassen und Schotterfluren	771	1	7	19	19	29	48	8			
Jungmoränen	882	1	17	25	26	36	106	10			
Altmoränen	199	1	14	20	22	31	77	8			
Feuersteinlehm	73	11	18	26	28	46	50	10			
Oberjura	1 153	5	26	43	44	64	139	16			
Mitteljura (Sand- und Tonstein)	84	6	9	19	18	40	48	8			
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	531	2	19	36	45	86	200	31			
Posidonienschiefer	22	26	34	45	58	102	148	32			
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	2 227	Nwg	22	31	32	43	334	12			
Sandsteinkeuper	80	4	5	8	12	22	54	10			
Letten- u. Gipskeuper	197	5	12	26	27	43	57	12			
Oberer Muschelkalk mit lückenhafter Lössbedeckung	220	10	24	32	35	50	95	12			
Oberer Muschelkalk	270	2	24	35	36	49	69	11			
Muschelkalk, ungegliedert	77	17	25	36	40	55	85	14			
Oberer Buntsandstein mit lückenhafter Lössbedeckung	43	10	12	17	17	22	26	4			
Oberer Buntsandstein	158	1	6	17	24	45	134	22			
Grundgebirge	544	1	10	17	19	28	182	13			

Schwermetallgesamt	gehalte	acker	baulich	genutz	ter Ob	erböden	1	
Geologische Einheiten			Qu	ecksilbe	r (mg/kg	TS)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	arithme- tisches Mittel	90- Perzentil	Max.	Stan- dardab- weichung
Löss und Lösslehm	1 684	Nwg	0,03	0,08	0,10	0,20	2,30	0,14
Niederterrassen und Schotterfluren	726	Nwg	0,02	0,06	0,08	0,14	1,75	0,13
Jungmoränen	730	0,01	0,04	0,08	0,10	0,18	0,50	0,07
Altmoränen	107	0,01	0,05	0,09	0,10	0,17	0,25	0,05
Feuersteinlehm	75	0,04	0,07	0,10	0,11	0,14	0,18	0,03
Oberjura	944	0,03	0,06	0,11	0,13	0,19	1,00	0,08
Mitteljura (Sand- und Tonstein)	84	0,08	0,09	0,10	0,26	0,12	12,00	1,35
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	489	Nwg	0,05	0,10	0,11	0,20	0,50	0,07
Posidonienschiefer	17	0,10	0,10	0,10	0,12	0,17	0,19	0,03
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	2 037	Nwg	0,03	0,09	0,10	0,18	1,16	0,09
Sandsteinkeuper	63	0,03	0,04	0,06	0,07	0,12	0,24	0,04
Letten- u. Gipskeuper	154	Nwg	0,03	0,10	0,10	0,17	0,64	0,08
Oberer Muschelkalk mit lückenhafter Lössbedeckung	148	0,03	0,05	0,08	0,11	0,15	0,95	0,11
Oberer Muschelkalk	241	0,02	0,05	0,10	0,26	0,18	34,20	2,19
Muschelkalk, ungegliedert	58	0,02	0,04	0,08	0,09	0,14	0,31	0,05
Oberer Buntsandstein mit lückenhafter Löss-bedeckung	35	0,04	0,05	0,08	0,11	0,21	0,29	0,07
Oberer Buntsandstein	128	0,01	0,04	0,09	0,11	0,18	0,73	0,10
Grundgebirge	487	0,01	0,03	0,09	0,13	0,23	1,50	0,15

Schwermetallgesamtgehalte ackerbaulich genutzter Oberböden									
Geologische Einheiten				Zink (m	g/kg TS				
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	arithme- tisches Mittel	90- Perzentil	Max.	Stan- dardab- weichung	
Löss und Lösslehm	1 840	1	47	63	110	105	14 319	513	
Niederterrassen und Schotterfluren	769	18	32	56	60	87	421	26	
Jungmoränen	882	1	46	64	71	105	343	31	
Altmoränen	199	26	42	55	63	95	189	26	
Feuersteinlehm	73	48	53	81	83	114	138	22	
Oberjura	1 153	26	67	101	111	160	705	49	
Mitteljura (Sand- und Tonstein)	84	14	33	59	67	115	180	34	
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	537	16	58	99	106	161	335	49	
Posidonienschiefer	22	67	112	152	158	238	239	48	
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	2 226	13	45	62	71	105	335	38	
Sandsteinkeuper	80	25	35	50	53	70	193	21	
Letten- u. Gipskeuper	199	28	46	70	80	114	385	47	
Oberer Muschelkalk mit lückenhafter Lössbedeckung	220	10	53	73	82	115	391	41	
Oberer Muschelkalk	257	32	53	102	125	229	561	84	
Muschelkalk, ungegliedert	77	56	66	104	139	282	524	100	
Oberer Buntsandstein mit lückenhafter Lössbedeckung	43	46	55	64	68	78	180	20	
Oberer Buntsandstein	159	17	34	54	68	117	270	43	
Grundgebirge	545	14	51	88	114	163	3 053	189	

Teil 2: Oberböden (Ah-Horizonte) unter Grünland

Schwermetallgesamt	gehalte	der O	berböd	en unte	er Grünl	land
Geologische Einheiten			Blei (mo	g/kg TS)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.
Löss und Lösslehm	42	19	22	26	34	47
Niederterrassen und Schotterfluren	17	13		35		56
Jungmoränen	37	16	17	21	25	32
Altmoränen	19	18	20	21	23	28
Feuersteinlehm	34	28	34	39	123	135
Oberjura	130	19	32	41	52	69
Unter- u, Mitteljura (Ton- und Karbonatge- stein)	63	22	28	51	77	92
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	32	15	22	25	31	335
Sandsteinkeuper	29	26		32	42	68
Letten- u. Gipskeuper	56	12	27	34	51	84
Oberer Muschelkalk	62	23	26	35	51	325
Oberer Buntsandstein	47	11	27	29	49	381
Grundgebirge	90	6	32	46	83	99

Schwermetallgesamtgehalte der Oberböden unter Grünland								
Geologische Einheiten		Ca	admium (mg/kg T	S)			
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Löss und Lösslehm	42	Nwg	0,10	0,20	0,20	0,36		
Niederterrassen und Schotterfluren	14	Nwg		0,16		0,20		
Jungmoränen	37	0,10	0,11	0,20	0,34	1,16		
Altmoränen	19	0,10	0,10	0,10	0,10	0,27		
Feuersteinlehm	34	0,10	0,10	0,18	0,44	0,87		
Oberjura	130	0,10	0,29	0,68	1,31	2,20		
Unter- u, Mitteljura (Ton- und Karbonatge- stein)	63	Nwg	0,10	0,20	0,48	0,59		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	32	Nwg	0,10	0,10	0,10	0,16		
Sandsteinkeuper	28	0,10		0,10	0,2	0,92		
Letten- u. Gipskeuper	57	Nwg	Nwg	0,10	0,19	57,00		
Oberer Muschelkalk	62	0,10	0,11	0,25	0,52	14,00		
Oberer Buntsandstein	46	0,10	0,10	0,11	0,25	0,62		
Grundgebirge	90	Nwg	0,10	0,17	0,77	1,33		

Schwermetallgesamtgehalte der Oberböden unter Grünland							
Geologische Einheiten		(Chrom (m	g/kg TS	5)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.	
Löss und Lösslehm	42	16	30	36	52	112	
Niederterrassen und Schotterfluren	17	14		35		73	
Jungmoränen	37	26	29	32	42	53	
Altmoränen	19	24	26	27	30	42	
Feuersteinlehm	34	25	32	46	83	99	
Oberjura	126	23	42	57	74	86	
Unter- u, Mitteljura (Ton- und Karbonatge- stein)	62	31	35	42	77	169	
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	32	18	28	32	36	41	
Sandsteinkeuper	29	7		37	46	55	
Letten- u. Gipskeuper	57	27	36	43	50	117	
Oberer Muschelkalk	60	34	39	46	55	60	
Oberer Buntsandstein	40	5	10	17	29	39	
Grundgebirge	89	9	13	41	63	530	

Schwermetallgesamtgehalte der Oberböden unter Grünland								
Geologische Einheiten		ı	Kupfer (m	g/kg TS)			
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Löss und Lösslehm	42	6	12	17	20	167		
Niederterrassen und Schotterfluren	17	7		15		47		
Jungmoränen	35	16	22	27	384	541		
Altmoränen	19	10	10	12	13	29		
Feuersteinlehm	34	5	7	12	16	19		
Oberjura	130	11	15	24	37	46		
Unter- u, Mitteljura (Ton- und Karbonatge- stein)	61	11	14	18	32	40		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	32	10	12	14	17	18		
Sandsteinkeuper	29	4		13	15	42		
Letten- u. Gipskeuper	56	11	13	20	30	32		
Oberer Muschelkalk	61	13	16	27	46	68		
Oberer Buntsandstein	40	1	4	8	17	165		
Grundgebirge	88	6	9	15	26	38		

Schwermetallgesamtgehalte der Oberböden unter Grünland							
Geologische Einheiten		N	lickel (m	g/kg TS	5)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.	
Löss und Lösslehm	42	6	20	24	32	46	
Niederterrassen und Schotterfluren	17	8		22		50	
Jungmoränen	35	18	24	30	35	40	
Altmoränen	19	16	16	16	17	47	
Feuersteinlehm	34	11	16	19	31	50	
Oberjura	126	25	36	47	58	70	
Unter- u, Mitteljura (Ton- und Karbonatge- stein)	60	20	28	36	101	124	
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	32	16	20	24	26	28	
Sandsteinkeuper	29	5		23	32	33	
Letten- u. Gipskeuper	56	21	23	33	40	49	
Oberer Muschelkalk	60	26	33	42	52	59	
Oberer Buntsandstein	40	2	7	8	15	38	
Grundgebirge	88	3	7	16	22	741	

Schwermetallgesamtgehalte der Oberböden unter Grünland								
Geologische Einheiten		Qu	ecksilber	(mg/kg	TS)			
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Löss und Lösslehm	42	Nwg	0,04	0,06	0,09	0,14		
Niederterrassen und Schotterfluren	16	Nwg		0,04		0,20		
Jungmoränen	26	0,04	0,05	0,07	0,08	0,25		
Altmoränen	19	0,02	0,03	0,05	0,07	0,07		
Feuersteinlehm	34	0,03	0,05	0,08	0,14	0,30		
Oberjura	120	0,01	0,04	0,07	0,12	0,48		
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	56	0,02	0,05	0,06	0,10	0,11		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	32	0,01	0,01	0,05	0,07	0,09		
Sandsteinkeuper	29	0,03		0,05	0,07	0,14		
Letten- u. Gipskeuper	54	0,02	0,03	0,05	0,08	0,10		
Oberer Muschelkalk	57	0,01	0,00	0,03	0,06	57,00		
Oberer Buntsandstein	44	0,01	0,04	0,07	0,09	0,13		
Grundgebirge	88	0,01	0,04	0,08	0,14	0,71		

Schwermetallgesamtgehalte der Oberböden unter Grünland							
Geologische Einheiten			Zink (mg	g/kg TS)			
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.	
Löss und Lösslehm	42	47	49	57	69	81	
Niederterrassen und Schotterfluren	17	10		66		120	
Jungmoränen	35	48	51	61	80	84	
Altmoränen	19	42	45	49	56	87	
Feuersteinlehm	34	40	44	66	95	110	
Oberjura	130	38	74	97	157	192	
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	61	44	85	112	132	225	
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	32	32	45	51	59	62	
Sandsteinkeuper	29	28		52	67	109	
Letten- u. Gipskeuper	56	44	48	58	68	80	
Oberer Muschelkalk	61	46	58	73	113	564	
Oberer Buntsandstein	40	6	17	46	57	107	
Grundgebirge	88	28	33	81	113	174	

Teil 3: Oberböden (Ah-Horizonte) unter Wald

Schwermetallgesamtgehalte der Oberböden unter Wald							
Geologische Einheiten			Blei (mg	g/kg TS)			
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.	
Löss und Lösslehm	91	16	20	27	57	84	
Niederterrassen und Schotterfluren	48	5	9	21	38	77	
Jungmoränen	19	17		29		67	
Altmoränen	8	21		28		34	
Feuersteinlehm	14	33		64		91	
Oberjura	26	28		55		74	
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	23	18		43		56	
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	27	11		30		80	
Sandsteinkeuper	58	11	19	35	72	175	
Letten- u. Gipskeuper	43	12	23	34	77	219	
Oberer Muschelkalk	39	20	27	51	76	278	
Oberer Buntsandstein	49	Nwg	15	27	48	85	
Grundgebirge	64	Nwg	6	31	72	198	

Schwermetallgesamtgehalte der Oberböden unter Wald								
Geologische Einheiten		С	admium ((mg/kg T	S)			
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Löss und Lösslehm	91	Nwg	Nwg	0,17	0,20	0,27		
Niederterrassen und Schotterfluren	48	Nwg	Nwg	0,12	0,22	0,60		
Jungmoränen	19	Nwg		0,10		0,16		
Altmoränen	8	Nwg		0,10		0,11		
Feuersteinlehm	14	0,10		0,12		0,37		
Oberjura	25	0,10		0,35		1,69		
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	23	Nwg		0,10		0,57		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	27	Nwg		0,10		0,40		
Sandsteinkeuper	59	Nwg	Nwg	0,10	0,35	17,00		
Letten- u. Gipskeuper	43	Nwg	Nwg	0,10	0,34	0,86		
Oberer Muschelkalk	39	Nwg	Nwg	0,35	1,19	14,00		
Oberer Buntsandstein	49	Nwg	0,02	0,18	0,21	0,82		
Grundgebirge	64	Nwg	Nwg	0,10	0,20	0,46		

Schwermetallgesamtgehalte der Oberböden unter Wald								
Geologische Einheiten			Chrom (n	ng/kg TS				
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Löss und Lösslehm	82	12	18	29	48	58		
Niederterrassen und Schotterfluren	47	4	7	13	33	117		
Jungmoränen	12	13		22		50		
Altmoränen	7	18		22		37		
Feuersteinlehm	14	15		25		39		
Oberjura	15	20		34		109		
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	17	10		30		280		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	27	1		25		87		
Sandsteinkeuper	53	1	3	6	21	68		
Letten- u. Gipskeuper	40	2	6	25	36	80		
Oberer Muschelkalk	29	20	28	40	95	119		
Oberer Buntsandstein	45	5	6	21	32	40		
Grundgebirge	57	Nwg	3	22	42	56		

Schwermetallgesamtgehalte der Oberböden unter Wald								
Geologische Einheiten			Kupfer (n	ng/kg TS)			
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Löss und Lösslehm	88	3	7	10	16	28		
Niederterrassen und Schotterfluren	48	1	2	6	11	17		
Jungmoränen	18	4		8		22		
Altmoränen	8	5		7		11		
Feuersteinlehm	14	5		8		11		
Oberjura	25	8		13		44		
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	22	3		8		21		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	28	5		9		45		
Sandsteinkeuper	60	Nwg	2	6	23	53		
Letten- u. Gipskeuper	42	Nwg	6	9	29	100		
Oberer Muschelkalk	36	10	15	28	40	45		
Oberer Buntsandstein	45	2	3	5	8	10		
Grundgebirge	61	Nwg	2	7	20	34		

Schwermetallgesamtgehalte der Oberböden unter Wald								
Geologische Einheiten			Nickel (m	ng/kg TS)				
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Löss und Lösslehm	81	6	10	17	28	37		
Niederterrassen und Schotterfluren	47	Nwg	3	9	23	89		
Jungmoränen	12	8		15		31		
Altmoränen	7	9		11		17		
Feuersteinlehm	14	8		14		18		
Oberjura	16	15		24		106		
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	10	7		12		78		
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	27	6		17		66		
Sandsteinkeuper	54	Nwg	2	5	11	24		
Letten- u. Gipskeuper	40	4	8	18	30	88		
Oberer Muschelkalk	29	19	22	35	45	94		
Oberer Buntsandstein	44	Nwg	2	5	18	34		
Grundgebirge	55	Nwg	1	10	35	43		

Schwermetallgesamtgehalte der Oberböden unter Wald							
Geologische Einheiten		Qu	ecksilber	mg/kg T	S)		
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.	
Löss und Lösslehm	81	0,01	0,05	0,07	0,16	0,30	
Niederterrassen und Schotterfluren	47	0,02	0,03	0,07	0,15	0,45	
Jungmoränen	12	0,03		0,10		0,21	
Altmoränen	7	0,06		0,09		0,14	
Feuersteinlehm	14	0,03		0,13		0,23	
Oberjura	13	0,04		0,10		0,14	
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	14	0,04		0,12		0,38	
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	27	0,01		0,07		0,39	
Sandsteinkeuper	48	0,01	0,04	0,08	0,17	0,39	
Letten- u. Gipskeuper	38	Nwg	0,04	0,07	0,16	0,26	
Oberer Muschelkalk	28	Nwg	0,04	0,12	0,16	0,23	
Oberer Buntsandstein	42	0,04	0,06	0,09	0,17	0,27	
Grundgebirge	55	0,01	0,04	0,09	0,16	0,31	

Schwermetallgesamtgehalte der Oberböden unter Wald										
Geologische Einheiten	Nickel (mg/kg TS)									
Kurzbezeichnung	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.				
Löss und Lösslehm	88	20	31	44	58	88				
Niederterrassen und Schotterfluren	48	11	14	28	47	139				
Jungmoränen	18	13		35		67				
Altmoränen	8	21		38		55				
Feuersteinlehm	14	27		40		51				
Oberjura	25	48		65		252				
Unter- u. Mitteljura (Ton- und Karbonatge- stein)	22	21		57		210				
Mesozoisches Ton- u. Mergelgestein mit lü- ckenhafter Lössbede- ckung	27	31		47		156				
Sandsteinkeuper	56	12	18	36	63	115				
Letten- u. Gipskeuper	42	5	32	50	81	168				
Oberer Muschelkalk	36	42	48	84	229	1 892				
Oberer Buntsandstein	46	10	13	30	50	377				
Grundgebirge	61	5	21	51	83	116				

Teil 4: Humusauflage

Schwermetallgesamtgehalte der Humusauflage, ungegliedert									
Element	Aufschluss	Anzahl	Min.	10- Perzentil	Median	90- Perzentil	Max.		
Blei	Königswas- ser	407	7	22	64	133	316		
	Salpeter- säure	210	9	39	77	127	241		
Cadmium	Königswas- ser	406	0,10	0,10	0,38	0,83	34,00		
	Salpeter- säure	210	0,10	0,23	0,39	0,65	1,10		
Chrom	Königswas- ser	332	Nwg	2	6	20	138		
Kupfer	Königswas- ser	396	2	7	12	22	120		
	Salpeter- säure	210	4	7	12	17	68		
Nickel	Königswas- ser	332	1	3	8	14	97		
Queck- silber	Königswas- ser	332	0,01	0,09	0,25	0,57	7,00		
Zink	Königswas- ser	397	Nwg	32	58	90	420		
	Salpeter- säure	210	17	35	52	72	112		